【題目】如圖,中,,于,平分交于,交于.
(1)求證:;
(2)若,求的度數(shù).
【答案】
【解析】
試題(1)根據(jù)垂線的定義得∠CDB=∠FEB=90°,后根據(jù)同位角相等,兩直線平行,可以得到EF∥CD;
(2)先根據(jù)角平分線的定義得∠ACE=45°,再利用互余計算出∠ACD=90°-∠A=20°,
則∠ECD=∠ACE-∠ACD=25°,然后根據(jù)平行線的性質(zhì)求解.
試題解析:(1)證明:∵CD⊥AB,EF⊥AB,
∴∠CDB=∠FEB=90°,
∴EF∥CD;
(2)解:∵∠ACB=90°,CE平分∠ACB交AB于E,
∴∠ACE=45°,
∵∠A=70°,
∴∠ACD=90°﹣70°=20°,
∴∠ECD=∠ACE﹣∠ACD=25°,
∵EF∥CD,
∴∠FEC=∠ECD=25°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小明和爸爸在800米的環(huán)形跑道上騎車鍛煉,他們在同一地點沿著同一方向同時出發(fā),騎行結(jié)束后兩人有如下對話:
小明:您要5分鐘才能第一次追上我.
爸爸:我騎完一圈的時候,你才騎了半圈!
(1)請根據(jù)他們的對話內(nèi)容,求小明和爸爸的騎行速度(速度單位:米/分鐘);
(2)爸爸第一次追上小明后,在第二次相遇前,再經(jīng)過多少分鐘,小明和爸爸相距80米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD,EF相交于點O.
(1)寫出∠COE的鄰補角;
(2)分別寫出∠COE和∠BOE的對頂角;
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為12,在其角上去掉兩個全等的矩形DMNP和矩形BIJK,DM=IB=2,DP=BK=3,正方形EFGH頂點分別在正方形ABCD的邊上,且EH過N點,則正方形EFGH的邊長是( )
A.10
B.3
C.4
D.3 或4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,墻面OC與地面OD垂直,一架梯子AB長5米,開始時梯子緊貼墻面,梯子頂端A沿墻面勻速每分鐘向下滑動1米,x分鐘后點A滑動到點A′,梯子底端B沿地面向左滑動到點B′,OB′=y米,滑動時梯子長度保持不變.
(1)當x=1時,y=米;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)研究(2)中函數(shù)圖象及其性質(zhì).
①填寫下表,并在所給的坐標系中畫出函數(shù)圖象;
②如果點P(x,y)在(2)中的函數(shù)圖象上,求證:點P到點Q(5,0)的距離是定值;
(4)梯子底端B沿地面向左滑動的速度是
A.勻速
B.加速
C.減速
D.先減速后加速.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x﹣3,點P在該函數(shù)的圖象上,點P到x軸、y軸的距離分別為d1、d2 . 設(shè)d=d1+d2 , 下列結(jié)論中: ①d沒有最大值;
②d沒有最小值;
③﹣1<x<3時,d隨x的增大而增大;
④滿足d=5的點P有四個.
其中正確結(jié)論的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是( 。
A. 2, B. 2,1 C. 4, D. 4,3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是過點的直線,于,于點;
(1)若、在的同側(cè)(如圖所示)且.求證:;
(2)若、在的兩側(cè)(如圖所示),且,其他條件不變,與仍垂直嗎?若是請給出證明;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題6分)如圖,△ABC的頂點都在每個邊長為1個單位長度的方格紙的格點上,將△ABC向右平移3格,再向上平移2格.
(1)請在圖中畫出平移后的;
(2)△ABC的面積為 _;
(3)若AB的長約為5.4,求出AB邊上的高(結(jié)果保留整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com