【題目】已知P是⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動點A、B(不與P,Q重合),連接AP、BP. 若∠APQ=BPQ.

(1)如圖1,當∠APQ=45°,AP=1,BP=2時,求⊙O的半徑;

(2)如圖2,選接AB,交PQ于點M,點N在線段PM(不與P、M重合),連接ON、OP,若∠NOP+2OPN=90°,探究直線ABON的位置關(guān)系,并證明.

【答案】(1) O的半徑是;(2)AB∥ON,證明見解析.

【解析】

(1) 連接AB,根據(jù)題意可AB為直徑,再用勾股定理即可。

(2) 連接, , ,根據(jù)圓周角定理可得,從而證出

, 延長0于點,則有,再根據(jù)三角形內(nèi)角和定理求得=90得證.

解:(1)連接,

0中,

,

0的直徑.

中,

0的半徑是

(2)

證明:連接, , ,

0中,

, ,

.

,

.

中,, ,

,即

連接,交于點

0中,

延長0于點,則有

,

又:,

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO沿x軸向右滾動到△AB1C1的位置,再到△A1B1C2的位置……依次進行下去,若已知點A(4,0)B(0,3),則點C100的坐標為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1表示的是某手機商店20187~12月各月銷售總額的統(tǒng)計圖,如圖2表示的是該商店華為品牌手機各月占商店銷售總額的百分比統(tǒng)計圖。已知7月份華為品牌手機的月銷售額為12萬元,觀察如圖1、如圖2,解析下列問題:

1)求該手機商店7月份的銷售總額。

2)小明觀察圖2認為,12月份華為品牌手機的銷售額比11月份減少了。你同意他的看法嗎?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個實數(shù)根分別為x1,x2

(1)求m的取值范圍.

(2)若2(x1+x2)+ x1x2+10=0.求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A01)、點B01+t)、C0,1t)(t0),點P在以D3,5)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則t的最小值是______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠C=90°,BC=16,DC=12AD=21,動點P從點D出發(fā),沿射線DA的方向以每秒2個單位長度的速度運動,動點Q從點C出發(fā),在線段CB上以每秒1個單位長度的速度向點B運動,點P,Q分別從點D,C同時出發(fā),當點Q運動到點B時,點P隨之停止運動.設(shè)運動的時間為t(秒).

(1)設(shè)△BPQ的面積為S,求St之間的函數(shù)關(guān)系式;

(2)當t為何值時,以B,P,Q三點為頂點的三角形是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次羽毛球賽中,甲運動員在離地面米的P點處發(fā)球,球的運動軌跡PAN看作一個拋物線的一部分,當球運動到最高點A時,其高度為3米,離甲運動員站立地點O的水平距離為5米,球網(wǎng)BC離點O的水平距離為6米,以點O為原點建立如圖所示的坐標系,乙運動員站立地點M的坐標為(m0.

1)求拋物線的解析式(不要求寫自變量的取值范圍);

2)求羽毛球落地點N離球網(wǎng)的水平距離(即NC的長);

3)乙原地起跳后可接球的最大高度為2.4米,若乙因為接球高度不夠而失球,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列條件求函數(shù)的表達式:

1)已知變量x,y,t滿足:yt22,x3t.求y關(guān)于x的函數(shù)表達式;

2)已知二次函數(shù)yax2+bx+c,當x1時,y2;當x=﹣2時,y=﹣7;當x=﹣1時,y0.求這個二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為10的⊙中,弦所對的圓心角分別是,,若,,則弦的長等于(  )

A. 18B. 16C. 10D. 8

查看答案和解析>>

同步練習冊答案