【題目】已知,如圖1,△ABC中,BA=BC,D是平面內(nèi)不與A、B、C重合的任意一點(diǎn),∠ABC=∠DBE,BD=BE.
(1)求證:△ABD≌△CBE;
(2)如圖2,當(dāng)點(diǎn)D是△ABC的外接圓圓心時(shí),請判斷四邊形BDCE的形狀,并證明你的結(jié)論.
【答案】(1)證明見解析(2)四邊形BDEF是菱形,證明見解析
【解析】
(1)證明:∵∠ABC=∠DBE,∴∠ABC+∠CBD=∠DBE+∠CBD。∴∠ABD=∠CBE。
在△ABD與△CBE中,BA=BC,∠ABD=∠CBE,BD=BE,
∴△ABD≌△CBE(SAS) 。
(2)解:四邊形BDEF是菱形。證明如下:
由(1)△ABD≌△CBE,∴CE=AD。
∵點(diǎn)D是△ABC外接圓圓心,∴DA=DB=DC。
又∵BD=BE,∴BD=BE=CE=CD。
∴四邊形BDCE是菱形。
(1)由∠ABC=∠DBE,根據(jù)等量加等量和相等,得∠ABD=∠CBE,從而根據(jù)SAS即可證得結(jié)論。
(2)由三角形外接圓圓心到三個(gè)頂點(diǎn)距離相等的性質(zhì)和(1)的結(jié)論,得到四邊形四邊相等,從而得出結(jié)論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB⊥AC,BC交⊙O于D,E是AC的中點(diǎn),ED與AB的延長線相交于點(diǎn)F.
(1)求證:DE為⊙O的切線.
(2)若BF=2,tan∠BDF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點(diǎn)P,過點(diǎn)B的直線交OP的延長線于點(diǎn)C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若OA=5,OP=3,求CB的長;
(3)設(shè)△AOP的面積是S1,△BCP的面積是S2,且.若⊙O的半徑為4,BP=,求tan∠CBP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,把線段沿射線方向平移(點(diǎn)始終在射線上)至位置,直線與直線交于點(diǎn),又聯(lián)結(jié)與直線交于點(diǎn).
(1)當(dāng)時(shí),求證:;
(2)當(dāng)點(diǎn)位于線段上時(shí)(不含端點(diǎn)、),設(shè),,試求關(guān)于的函數(shù)解析式,并寫出定義域;
(3)當(dāng)以、、為頂點(diǎn)的三角形與相似時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),連接DE.過點(diǎn)A作AF⊥DE,垂足為F,⊙O經(jīng)過點(diǎn)C、D、F,與AD相交于點(diǎn)G.
(1)求證:△AFG∽△DFC;
(2)若正方形ABCD的邊長為4,AE=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用兩種方法證明“圓的內(nèi)接四邊形對(duì)角互補(bǔ)”.
已知:如圖①,四邊形ABCD內(nèi)接于⊙O.
求證:∠B+∠D=180°.
證法1:如圖②,作直徑DE交⊙O于點(diǎn)E,連接AE、CE.
∵DE是⊙O的直徑,
∴ .
∵∠DAE+∠AEC+∠DCE+∠ADC=360°,
∴∠AEC+∠ADC=360°-∠DAE-∠DCE=360°-90°-90°=180°.
∵∠B和∠AEC所對(duì)的弧是,
∴ .
∴∠B+∠ADC=180°.
請把證法1補(bǔ)充完整,并用不同的方法完成證法2.
證法2:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.Rt△ABC中,已知∠C=90°,∠B=50°,點(diǎn)D在邊BC上,BD=2CD(圖4).把△ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m(0<m<180)度后,如果點(diǎn)B恰好落在初始Rt△ABC的邊上,那么m=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a≠0)的圖象如圖所示,對(duì)稱軸是x=-1.下列結(jié)論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )
A. ③④ B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)坐標(biāo)分別為O(0,0),A(12,0),B(8,6),C(0,6).動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒3個(gè)單位長度的速度沿邊向OA終點(diǎn)A運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),以每秒2個(gè)單位長度的速度沿邊BC向終點(diǎn)C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,PQ=y.
(1)直接寫出y關(guān)于t的函數(shù)解析式及t的取值范圍: ;
(2)當(dāng)PQ=3時(shí),求t的值;
(3)連接OB交PQ于點(diǎn)D,若雙曲線經(jīng)過點(diǎn)D,問k的值是否變化?若不變化,請求出k的值;若變化,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com