點(diǎn)O是平行四邊形ABCD的兩條對(duì)角線AC,BD的交點(diǎn),若平行四邊形的面積為8,則△AOB的面積是________.

2
分析:根據(jù)平行四邊形的性質(zhì)推出OA=OC,OD=OB,根據(jù)等底等高的三角形的面積相等推出S△AOB=S△AOD,S△AOD=S△DOC,S△DOC=S△BCO,即可求出△AOB的面積.
解答:解:∵四邊形ABCD是平行四邊形,
∴OA=OC,OD=OB,
△AOB邊OB上的高和△DOA的邊OD上的高相等,且OB=OD,
∴S△AOB=S△AOD
同理:S△AOD=S△DOC,
S△DOC=S△BCO
∴△AOB的面積是S平行四邊形ABCD=×8=2.
故答案為:2.
點(diǎn)評(píng):本題主要考查對(duì)三角形的面積,平行四邊形的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,能根據(jù)平行四邊形的性質(zhì)和三角形的面積求出△AOB的面積=S平行四邊形ABCD是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?
(2)請(qǐng)你說(shuō)明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.
(4)如圖4,點(diǎn)E是平行四邊形ABCD的邊AB的黃金分割點(diǎn),過(guò)點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線EF是平行四邊形ABCD的黃金分割線.請(qǐng)你畫一條平行四邊形ABCD的黃金分割線,使它不經(jīng)過(guò)平行四邊形ABCD各邊黃金分割點(diǎn).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)M是平行四邊形ABCD的邊AD的中點(diǎn),點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),PE∥MB,PF∥MC,分別交MC于點(diǎn)E、交MB于點(diǎn)F,如果AB:AD=1:2,試判斷四邊形PEMF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)O是平行四邊形ABCD的對(duì)稱中心,將直線DB繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),交DC、AB精英家教網(wǎng)于點(diǎn)E、F.
(1)證明:△DEO≌△BFO;
(2)若DB=2,AD=1,AB=
5

①當(dāng)DB繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)45°時(shí),判斷四邊形AECF的形狀,并說(shuō)明理由;
②在直線DB繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)的過(guò)程中,是否存在矩形DEBF,若存在,請(qǐng)求出相應(yīng)的旋轉(zhuǎn)角度(結(jié)果精確到1°);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)E是平行四邊形ABCD的邊AB延長(zhǎng)線上一點(diǎn),且BE=
23
AB,DE分別交BC、AC于點(diǎn)F、G.
(1)求EF:FD與CG:AG;
(2)若FG=GD-3,試求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)O是平行四邊形ABCD對(duì)角線AC、BD的交點(diǎn),將直線DB繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),交DC、AB于點(diǎn)E、F,若DB=2,AD=1,AB=
5

(1)求證:當(dāng)旋轉(zhuǎn)角為90°,四邊形AFED是平行四邊形;
(2)當(dāng)旋轉(zhuǎn)角為45°時(shí),判斷四邊形AECF的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案