【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖所示,當(dāng)乙到達(dá)終點(diǎn)A時,甲還需分鐘到達(dá)終點(diǎn)B.
【答案】18
【解析】解:由縱坐標(biāo)看出甲先行駛了1千米,由橫坐標(biāo)看出甲行駛1千米用了6分鐘, 甲的速度是1÷6= 千米/分鐘,
由縱坐標(biāo)看出AB兩地的距離是16千米,
設(shè)乙的速度是x千米/分鐘,由題意,得
10x+16× =16m,
解得x= 千米/分鐘,
相遇后乙到達(dá)A站還需(16× )÷ =2分鐘,
相遇后甲到達(dá)B站還需(10× )÷ =20分鐘,
當(dāng)乙到達(dá)終點(diǎn)A時,甲還需20﹣2=18分鐘到達(dá)終點(diǎn)B,
所以答案是:18.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的圖象的相關(guān)知識可以得到問題的答案,需要掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在五邊形 ABCDE 中,∠E=90°,BC=DE.連接 AC,AD, 且 AB=AD,AC⊥BC.
(1)求證:AC=AE;
(2)如圖 2,若∠ABC=∠CAD,AF 為 BE 邊上的中線,求證:AF⊥CD;
(3)如圖 3,在(2)的條件下,AE=6,DE=4,則五邊形 ABCDE 的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C為數(shù)軸上的三點(diǎn),動點(diǎn)A、B同時從原點(diǎn)出發(fā),動點(diǎn)A每秒運(yùn)動x個單位,動點(diǎn)B每秒運(yùn)動y個單位,且動點(diǎn)A運(yùn)動到的位置對應(yīng)的數(shù)記為a,動點(diǎn)B運(yùn)動到的位置對應(yīng)的數(shù)記為b,定點(diǎn)C對應(yīng)的數(shù)為8.
(1)若2秒后,a、b滿足|a+8|+(b﹣2)2=0,則x= ,y= ,并請在數(shù)軸上標(biāo)出A、B兩點(diǎn)的位置.
(2)若動點(diǎn)A、B在(1)運(yùn)動后的位置上保持原來的速度,且同時向正方向運(yùn)動z秒后使得|a|=|b|,使得z= .
(3)若動點(diǎn)A、B在(1)運(yùn)動后的位置上都以每秒2個單位向正方向運(yùn)動繼續(xù)運(yùn)動t秒,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離為AB,且AC+BC=1.5AB,則t= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】之前我們學(xué)習(xí)了一元一次方程的解法,下面是一道解一元一次方程的題:
解方程﹣=1
老師說:這是一道含有分母的一元一次方程,我們可以根據(jù)等式的性質(zhì),可以把方程的兩邊同乘以6,這樣就可以去掉分母了.于是,小明按照老師說的方法進(jìn)行了解答,小明同學(xué)的解題過程如下:
解:方程兩邊同時乘以6,得×6﹣×6=1…………①
去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②
去括號,得:4﹣6x﹣3x+15=1……………③
移項,得:﹣6x﹣3x=1﹣4﹣15…………④
合并同類項,得﹣9x=﹣18……………⑤
系數(shù)化1,得:x=2………………⑥
上述小明的解題過程從第 步開始出現(xiàn)錯誤,錯誤的原因是 .
請幫小明改正錯誤,寫出完整的解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A的坐標(biāo)為(-3,-4),點(diǎn)B的坐標(biāo)為(5,0).
(1)求證:OA=OB.
(2)求△AOB的面積.
(3)求原點(diǎn)O到AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x和y軸分別交于點(diǎn)B和點(diǎn)C,與直線OA相交于點(diǎn)A(4,2),動點(diǎn)M在線段OA和射線AC上運(yùn)動.
(1)求點(diǎn)B和點(diǎn)C的坐標(biāo).
(2)求△OAC的面積.
(3)是否存在點(diǎn)M,使△OMC的面積是△OAC的面積的?若存在,求出此時點(diǎn)M的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過點(diǎn)A(2,﹣3),與x軸負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=3OB.
(1)求拋物線的解析式;
(2)點(diǎn)D在y軸上,且∠BDO=∠BAC,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,是否存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com