已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出以下結(jié)論:①a+b+c<0;②b2-4ac>0;③b>0;④4a-2b+c<0;⑤c-a>1,其中正確的結(jié)論有    .(把你認(rèn)為正確的結(jié)論的序號都填上)
【答案】分析:解此題先分別求出當(dāng)x等于1和-2時,y的值,就可判斷(1)(4),再根據(jù)開口方向與X軸的交點個數(shù)、對稱軸、與Y軸交點位置就能判斷(2)(3)(5).
解答:解:二次函數(shù)y=ax2+bx+c,
(1)由圖象知:當(dāng)x=1時,y=a+b+c<0,所以本答案正確,
(2)由圖象可以看出拋物線與X軸有兩個交點,所以b2-4ac>0,所以本答案正確,
(3)∵圖象開口向上,對稱軸是直線x=-1,
∴a<0,-<0,
∴b<0,所以本答案錯誤,
(4)當(dāng)x=-2時,y=4a-2b+c=1>0,所以本答案錯誤,
(5)由圖象知a<0,c=1,所以c-a>1,所以本答案正確,
故答案為:(1)(2)(5).
點評:解此題的關(guān)鍵是能正確觀察圖形和靈活運用二次函數(shù)的性質(zhì),能根據(jù)圖象確定a、b、c和b2-4ac的符號,并能根據(jù)圖象看出當(dāng)x取特殊值時y的符號.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當(dāng)x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應(yīng)值如下表,寫出方程ax2+bx+c=0的一個正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關(guān)于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當(dāng)x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊答案