【題目】如圖,直三棱柱ABC-A1B1C1的側(cè)棱長和底面各邊長均為2,其主視圖是邊長為2的正方形,則此直三棱柱左視圖的面積為

【答案】2
【解析】∵底面各邊長均為2,

∴△ABC是等邊三角形,

∴AB邊上的高為 = ,

∵主視圖是邊長為2的正方形,

∴左視圖是長為2,以△ABC的AB邊上的高為寬的矩形,

∴面積=2 ;


【考點精析】本題主要考查了等邊三角形的性質(zhì)和常見幾何體的三視圖的相關(guān)知識點,需要掌握等邊三角形的三個角都相等并且每個角都是60°;俯視圖放在主視圖的下面,長度與主視圖的長度一樣;左視圖放在主視圖的右面,高度與主視圖的高度一樣,寬度與俯視圖的寬度一樣,可簡記為“長對正;高平齊;寬相等”才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如圖1,直線l與坐標(biāo)軸的正半軸分別交于A,B兩點,與反比例函數(shù)y= (k>0,x>0)的圖象交于C,D兩點(點C在點D的左邊),過點C作CE⊥y軸于點E,過點D作DF⊥x軸于點F,CE與DF交于點G(a,b).

(1)若 ,請用含n的代數(shù)式表示 ;
(2)求證:AC=BD;
應(yīng)用:如圖2,直線l與坐標(biāo)軸的正半軸分別交于點A,B兩點,與反比例函數(shù)y= (k>0,x>0)的圖象交于點C,D兩點(點C在點D的左邊),已知 ,△OBD的面積為1,試用含m的代數(shù)式表示k.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用直尺和圓規(guī)作一個角等于已知角,如圖,能得出的依據(jù)是(  )

A. SAS B. SSS C. AAS D. ASA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD,ADBC,AD>BC,BC=6 cm,動點P,Q分別從A,C同時出發(fā),P1 cm/s的速度由AD運動,Q2cm/s的速度由CB運動(Q運動到B時兩點同時停止運動),________后四邊形ABQP為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將兩根筆直的細(xì)木條用圖釘固定并平行擺放,將一根橡皮筋拉直后用圖有分別周定在上,橡皮筋的兩端點分別記為點,點

1)圖1中,點上,若,則___________

2為橡皮筋上一點,,用橡皮筋的彈性拉動橡皮筋,使三點不在同一直線,后用圖固定點

①如圖2,若點在兩根細(xì)木條所在直線之間,且,試判斷線段所在直線的位置關(guān)系,并說明理由;

②如圖3,若點在兩根細(xì)木條所在直線的同側(cè),且,,試求的度數(shù);

3)如圖4為AB上兩點,拉動橡皮筋并固定,若,則____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P、Q分別是邊長為4cm的等邊ABCAB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且速度都為1cm/s,連接AQ、CP交于點M,下面四個結(jié)論:①△ABQ≌△CAP;;②∠CMQ的度數(shù)不變,始終等于60°③BP=CM;正確的有幾個( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某日王老師佩戴運動手環(huán)進(jìn)行快走鍛煉,兩次鍛煉后數(shù)據(jù)如表.與第一次鍛煉相比,王老師第二次鍛煉步數(shù)增長的百分率是其平均步長減少的百分率的3倍.設(shè)王老師第二次鍛煉時平均步長減少的百分率為x(0<x<0.5).

項目

第一次鍛煉

第二次鍛煉

步數(shù)(步)

10000

平均步長(米/步)

0.6

距離(米)

6000

7020

注:步數(shù)×平均步長=距離.
(1)根據(jù)題意完成表格填空;
(2)求x;
(3)王老師發(fā)現(xiàn)好友中步數(shù)排名第一為24000步,因此在兩次鍛煉結(jié)束后又走了500米,使得總步數(shù)恰好為24000步,求王老師這500米的平均步長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊AB、BCCA長分別是20、3040,其三條角平分線將△ABC分為三個三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a+b=﹣2,且a≥2b,則( ).
A. 有最小值
B. 有最大值1
C. 有最大值2
D. 有最小值

查看答案和解析>>

同步練習(xí)冊答案