作業(yè)寶如圖,已知∠AOB,OE平分∠AOC,OF平分∠BOC.
(1)若∠AOB是直角,求∠EOF的度數(shù);
(2)若∠AOB+∠EOF=156°,則∠EOF是多少度?

解:(1)∵OE平分∠AOC,
∴∠EOC=∠AOC=(∠AOB+∠BOC),
∵OF平分∠BOC,
∴∠COF=∠BOC,
∴∠EOF=∠EOC-∠COF=(∠AOB+∠BOC)-∠BOC=∠AOB,
∵∠AOB是直角,
∴∠EOF=×90°=45°;

(2)根據(jù)(1)的結(jié)論∠EOF=∠AOB,
∴∠AOB=2∠EOF,
∴∠AOB+∠EOF=2∠EOF+∠EOF=156°,
解得∠EOF=52°.
分析:(1)根據(jù)角平分線的定義可得∠EOC,∠COF,再根據(jù)∠EOF=∠EOC-∠COF代入熟記進(jìn)行計(jì)算即可得解;
(2)根據(jù)(1)的結(jié)論用∠AOB表示出∠EOF,然后代入進(jìn)行計(jì)算即可得解.
點(diǎn)評(píng):本題考查了角的計(jì)算,角平分線的定義,熟記概念求出∠EOF=∠AOB是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、(1)如圖,已知∠AOB和C、D兩點(diǎn),用直尺和圓規(guī)作一點(diǎn)P,使PC=PD,且P到OA、OB兩邊距離相等.

(2)用三角尺作圖在如圖的方格紙中,
①作△ABC關(guān)于直線l1對(duì)稱的△A1B1C1;再作△A1B1C1關(guān)于直線l2對(duì)稱的△A2B2C2;再作△A2B2C2關(guān)于直線l3對(duì)稱的△A3B3C3
②△ABC與△A3B3C3成軸對(duì)稱嗎?如果成,請(qǐng)畫出對(duì)稱軸;如果不成,把△A3B3C3怎樣平移可以與△ABC成軸對(duì)稱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠AOB是直角,∠AOC是銳角,ON平分∠AOC,OM平分∠BOC,則∠MON是( 。精英家教網(wǎng)
A、45°
B、45°+
1
2
∠AOC
C、60°-
1
2
∠AOC
D、不能計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.
(1)求∠EOF的度數(shù);
(2)若∠AOC=x°,∠EOF=y°.則請(qǐng)用x的代數(shù)式來表示y;
(3)如果∠AOC+∠EOF=156°,則∠EOF是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

尺規(guī)作圖:
如圖,已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB(不用寫作法,保留作圖痕跡).并證明你所作圖的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠AOB=x(0°<x<180°),OC平分∠AOB,點(diǎn)N為OB上一個(gè)定點(diǎn).通過畫圖可以知道:當(dāng)∠AOB=45°時(shí),在射線OC上存在點(diǎn)P,使△ONP成為等腰三角形,且符合條件的點(diǎn)有三個(gè),即P1(頂點(diǎn)為P2),P2(頂點(diǎn)為0),P3(頂點(diǎn)為N).
試問:當(dāng)∠AOB分別為銳角、直角、鈍角時(shí),在射線OC上使△ONP成為等腰三角形的點(diǎn)P是否仍然存在三個(gè)?請(qǐng)分別畫出簡(jiǎn)圖并加以說明.

查看答案和解析>>

同步練習(xí)冊(cè)答案