【題目】如圖,將ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到A′B′C,且點(diǎn)B剛好落在A′B′上.若∠A25°,∠BCA′45°,則∠A′BA___________

【答案】40

【解析】

由旋轉(zhuǎn)的性質(zhì)可得:∠A′=A=25°,∠B′=ABCCB=C B′,根據(jù)等邊對(duì)等角可得:∠B′=B′BC,根據(jù)三角形外角的性質(zhì)可得:∠B′BC=BCA′+∠A′=70°,從而求出∠B′BC和∠ABC,即可求出∠A′BA.

解:由旋轉(zhuǎn)的性質(zhì)可得:∠A′=A=25°,∠B′=ABC,CB=C B′

∴∠B′=B′BC

∵∠BCA′45°,

∴∠B′BC=BCA′+∠A′=70°

∴∠ABC=B′=B′BC=70°

∴∠A′BA=180°-∠B′BC-∠ABC=40°

故答案為:40

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某鄉(xiāng)鎮(zhèn)在精準(zhǔn)扶貧活動(dòng)中銷售一農(nóng)產(chǎn)品,經(jīng)分析發(fā)現(xiàn)月銷售量y(萬件)與月份x(月)的關(guān)系為:,每件產(chǎn)品的利潤z(元)與月份x(月)的關(guān)系如下表:

x

1

2

3

4

5

6

7

8

9

10

11

12

z

19

18

17

16

15

14

13

12

11

10

10

10

(1)請(qǐng)你根據(jù)表格求出每件產(chǎn)品利潤z(元)與月份x(月)的關(guān)系式;

(2)若月利潤w(萬元)=當(dāng)月銷售量y(萬件)×當(dāng)月每件產(chǎn)品的利潤z(元),求月利潤w(萬元)與月份x(月)的關(guān)系式;

(3)當(dāng)x為何值時(shí),月利潤w有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù),為常數(shù)且)中的的部分對(duì)應(yīng)值如下表:

1

0

1

3

1

3

5

3

給出了結(jié)論:

1)二次函數(shù)有最大值,最大值為5;(2;(3時(shí),的值隨值的增大而減小;(43是方程的一個(gè)根;(5)當(dāng)時(shí),.則其中正確結(jié)論的個(gè)數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩相似三角形對(duì)應(yīng)高的比為,且大三角形的面積為,求小三角形的面積,又這兩三角形的周長差為,則它們的周長分別為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABC中,ABAC,以AB為直徑的⊙OBC于點(diǎn)D,過點(diǎn)DDFAC于點(diǎn)F,交BA的延長線于點(diǎn)E.求證:

1BDCD;

2DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】揚(yáng)州漆器名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.

(1)求之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件,市場調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)1元,每星期要少賣出10件;每降價(jià)1元,每星期可多賣出20件,已知商品的進(jìn)價(jià)為每件40

(1)設(shè)每件漲價(jià)x元,則每星期實(shí)際可賣出 件,每星期售出商品的利潤y .x的取值范圍是 ;

(2)設(shè)每件降價(jià)m元,則每星期售出商品的利潤w 元;

(3)在漲價(jià)的情況下,如何定價(jià)才能使每星期售出商品的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,ADBC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CEAN,垂足為點(diǎn)E,

(1)求證:四邊形ADCE為矩形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,直線x軸、y軸分別膠于A、C兩點(diǎn),直線x軸、y軸分別交于B、D兩點(diǎn).

1)如圖1,點(diǎn)F是直線上的動(dòng)點(diǎn),當(dāng)的面積等于時(shí),有一線段(點(diǎn)M在點(diǎn)N的左側(cè))在直線BD上移動(dòng),首尾順次連接點(diǎn)A、MN、F構(gòu)成四邊形AMNF的周長最小時(shí)點(diǎn)N的橫坐標(biāo).

2)如圖2,將繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),記旋轉(zhuǎn)中的,若直線與直線AC交于點(diǎn)P,直線與直線DC交于點(diǎn)Q,當(dāng)是等腰三角形時(shí),直接寫出CP的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案