【題目】如圖,在△ABC中,∠BAC=20°,∠ABC=30°.

1)畫出BC邊上的高AD和角平分線AE

2)求∠EAD的度數(shù).

【答案】1)見解析;(250°

【解析】

從三角形的一個頂點向它的對邊作一條垂線,畫出的這條線段就是三角形的高,注意鈍角三角形較短邊上的高在三角形的外部,再結(jié)合尺規(guī)作角平分線的方法即可解答第(1)問;

2)根據(jù)已知條件,在ABD中運用三角形內(nèi)角和定理可得到∠BAD的度數(shù),然后由角平分線的定義可得∠BAE=10°,再結(jié)合∠EAD=BAD-BAE即可得到答案.

1)如圖所示,ADBC邊上的高,AE為角平分線.

2)∵ADBD,

∴∠ADB=90°.

∵在ABD中,∠ADB=90°,∠B=30°,

∴∠BAD=180°-90°-30°=60°.

∵∠BAC=20°AE為∠BAC的平分線,

∴∠BAE=10°.

∵∠BAD=60°,∠BAE=10°

∴∠EAD=BAD-BAE=60°-10°=50°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個各數(shù)位上的數(shù)字均不為的三位自然數(shù),將它各個數(shù)位上的數(shù)字平方后再取其個位,得到三個新的數(shù)字;再將這三個新數(shù)字重新組合成三位數(shù),當(dāng)的值最小時,稱此時的為自然數(shù)理想數(shù),并規(guī)定:,例如,各數(shù)字平方后取個位分別為,,再重新組合為,,,,,因為最小,所以是原三位數(shù)的理想數(shù),此時

(1)求:

(2)若有三位自然數(shù),滿足有兩個數(shù)位上的數(shù)字相同且不等于,另一個數(shù)位上的數(shù)字為,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載著這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題的大意是:有一塊三角形沙田,三條邊長分別為5里;12里;13里,問這塊沙田面積有多大?題中的1里=0.5千米,則該沙田的面積為( )

A.3平方千米B.7.5平方千米C.15平方千米D.30平方千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程組解應(yīng)用題:在首屆“一帶一路”國際合作高峰論壇舉辦之后,某公司準(zhǔn)備生產(chǎn)甲、乙兩種商品銷往“一帶一路”沿線國家和地區(qū),原計劃生產(chǎn)甲商品和乙商品共210噸,采用新技術(shù)后,實際產(chǎn)量為230噸,其中甲商品超產(chǎn)5%,乙商品超產(chǎn)15%,求該公司實際生產(chǎn)甲、乙兩種商品各多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、B兩地相距300千米,甲、乙兩車同時從A地出發(fā),以各自的速度勻速向B地行駛.甲車先到達B地,停留1小時后,速度不變,按原路返回.設(shè)兩車行駛的時間是x小時,離開A地的距離是y千米,如圖是yx的函數(shù)圖象.

1)甲車的速度是  ,乙車的速度是  ;

2)甲車在返程途中,兩車相距20千米時,求乙車行駛的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下車庫出口處安裝了“兩段式欄桿”,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖所示的位置,其中ABBCEFBC,∠AEF=135°,AB=AE=1.3米,那么適合該地下車庫的車輛限高標(biāo)志牌為(欄桿寬度忽略不計.參考數(shù)據(jù):≈1.4)(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.

(1)求∠AOE的度數(shù);

(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將相同的矩形卡片,按如圖方式擺放在一個直角上,每個矩形卡片長為2,寬為1,依此類推,擺放2014個時,實線部分長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程mx2-2mx+m-2=0.

(1)若方程有兩個不等實數(shù)根,求m的取值范圍;

(2)若方程的兩實數(shù)根為x1,x2,且|x1-x2|=1,求m的值.

查看答案和解析>>

同步練習(xí)冊答案