【題目】如圖1,在△ABC中,BC=4,以線段AB為邊作△ABD,使得AD=BD,連接DC,再以DC為邊作△CDE,使得DC=DE,∠CDE=∠ADB=α.
(1)如圖2,當∠ABC=45°且α=90°時,用等式表示線段AD,DE之間的數量關系;
(2)將線段CB沿著射線CE的方向平移,得到線段EF,連接BF,AF.
①若α=90°,依題意補全圖3,求線段AF的長;
②請直接寫出線段AF的長(用含α的式子表示).
【答案】(1)AD+DE=4;(2)①4;②.
【解析】
試題(1)由∠ABC=45°且α=90°,可得到A、D、E三點共線、B、D、C三點共線,故可得AD+DE=4;
(2)①圖形見試題解析,設DE與BC相交于點H,連接 AE,交BC于點G,則可證△ADE ≌△BDC,則可得到AE= BC=4,由平移的性質可AE= EF=4,在直角三角形AEF中,由于∠AFE=45°,可以求得AF的長;
②.
試題解析:(1) AD+DE=4.
(2)① 補全圖形,如下圖所示.
設DE與BC相交于點H,連接 AE,交BC于點G,如圖.
∠ADB=∠CDE =90°,∴∠ADE=∠BDC,在 △ADE與△BDC中,∵AD=BD,∠ADE=∠BDC,DE=DC,∴△ADE ≌△BDC,∴AE=" BC" ,∠AED=∠BCD,DE與BC相交于點H,∴∠GHE=∠DHC,∴∠EGH=∠EDC=90°,線段CB沿著射線CE的方向平移,得到線段EF,∴EF = CB=4, EF // CB,
∴AE= EF,CB//EF,∴∠AEF=∠EGH=90°,AE=EF,∠AEF=90°,∴∠AFE=45°,∴AF==4.
②.
科目:初中數學 來源: 題型:
【題目】如圖①,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PE=PA,PE交CD于F.
(1)求證: PC=PE;
(2)求∠CPE的度數;
(3)如圖②,把正方形ABCD改為菱形ABCD,其它條件不變,若∠ABC=65°,則∠CPE=________度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,E為CD邊的中點,,M為AE的中點,過點M作直線分別與AD、BC相交于點P、Q.若PQ=AE,則AP等于__________cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司投資新建了一商場,共有商鋪30間.據預測,當每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5 000元,少租出商鋪1間.該公司要為租出的商鋪每間每年交各種費用1萬元,未租出的商鋪每間每年交各種費用5 000元.
(1)當每間商鋪的年租金定為13萬元時,能租出多少間?
(2)當每間商鋪的年租金定為多少萬元時,該公司的年收益(收益=租金-各種費用)為275萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了提高學生書寫漢字的能力.增強保護漢字的意識,我區(qū)舉辦了“漢字聽寫大賽”,經選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:
組別 | 成績x分 | 頻數(人數) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 6 |
第3組 | 35≤x<40 | 14 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請結合圖表完成下列各題:
(1)求表中a的值;
(2)請把頻數分布直方圖補充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(4)第5組10名同學中,有4名男生,現將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,試用列表法或畫樹狀圖的方法求小宇和小強兩名男同學能分在一組的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)點 P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P、Q分別從A,B同時出發(fā),線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.
(2)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點 Q沿射線 CB方向從C點出發(fā)以2cm/s的速度移動,P、Q同時出發(fā),問幾秒后,△PBQ的面積為1cm2?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=DB,∠1=∠2,請問添加下面哪個條件不能判斷△ABC≌△DBE的是( 。
A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com