【題目】如圖,AB與⊙O相切于點B,BC為⊙O的弦,OC⊥OA,OA與BC相交于點P.
(1)求證:AP=AB;
(2)若OB=4,AB=3,求線段BP的長.
【答案】
(1)證明:∵OC=OB,
∴∠OCB=∠OBC,
∴AB是⊙O的切線,
∴OB⊥AB,
∴∠OBA=90°,
∴∠ABP+∠OBC=90°,
∵OC⊥AO,
∴∠AOC=90°,
∴∠OCB+∠CPO=90°,
∵∠APB=∠CPO,
∴∠APB=∠ABP,
∴AP=AB
(2)解:作OH⊥BC于H.
在Rt△OAB中,∵OB=4,AB=3,
∴OA= =5,
∵AP=AB=3,
∴PO=2.
在Rt△POC中,PC= =2 ,
∵ PCOH= OCOP,
∴OH= = ,
∴CH= = ,
∵OH⊥BC,
∴CH=BH,
∴BC=2CH= ,
∴PB=BC﹣PC= ﹣2 = .
【解析】(1)欲證明AP=AB,只要證明∠APB=∠ABP即可;(2)作OH⊥BC于H.在Rt△POC中,求出OP、PC、OH、CH即可解決問題.
【考點精析】利用切線的性質(zhì)定理對題目進行判斷即可得到答案,需要熟知切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.
科目:初中數(shù)學 來源: 題型:
【題目】對于坐標平面內(nèi)的點,現(xiàn)將該點向右平移1個單位,再向上平移2的單位,這種點的運動稱為點A的斜平移,如點P(2,3)經(jīng)1次斜平移后的點的坐標為(3,5),已知點A的坐標為(1,0).
(1)分別寫出點A經(jīng)1次,2次斜平移后得到的點的坐標.
(2)如圖,點M是直線l上的一點,點A關(guān)于點M的對稱點的點B,點B關(guān)于直線l的對稱軸為點C.
①若A、B、C三點不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點B由點A經(jīng)n次斜平移后得到,且點C的坐標為(7,6),求出點B的坐標及n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,已知A(3,0),且M(1,﹣ )是拋物線上另一點.
(1)求a、b的值;
(2)連結(jié)AC,設(shè)點P是y軸上任一點,若以P、A、C三點為頂點的三角形是等腰三角形,求P點的坐標;
(3)若點N是x軸正半軸上且在拋物線內(nèi)的一動點(不與O、A重合),過點N作NH∥AC交拋物線的對稱軸于H點.設(shè)ON=t,△ONH的面積為S,求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某市2013﹣2016年私人汽車擁有量和年增長率的統(tǒng)計量,該市私人汽車擁有量年凈增量最多的是年,私人汽車擁有量年增長率最大的是年.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點,連接AO并延長,交PB的延長線于點C,連接PO,交⊙O于點D.
(1)求證:PO平分∠APC;
(2)連接DB,若∠C=30°,求證:DB∥AC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校積極開展“陽光體育”活動,共開設(shè)了跳繩、足球、籃球、跑步四種運動項目,為了解學生最喜愛哪一種項目,隨機抽取了部分學生進行調(diào)查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).
(1)求本次被調(diào)查的學生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)該校共有1200名學生,請估計全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常數(shù)).
(1)當k取1和2時的函數(shù)y1和y2的圖象如圖所示,請你在同一直角坐標系中畫出當k取0時的函數(shù)的圖象;
(2)根據(jù)圖象,寫出你發(fā)現(xiàn)的一條結(jié)論;
(3)將函數(shù)y2的圖象向左平移4個單位,再向下平移2個單位,得到的函數(shù)y3的圖象,求函數(shù)y3的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com