利用如圖(1)或如圖(2)兩個(gè)圖形中的有關(guān)面積的等量關(guān)系都能證明數(shù)學(xué)中一個(gè)十分著名的定理,這個(gè)定理稱為________,該定理的結(jié)論其數(shù)學(xué)表達(dá)式是________

答案:
解析:

勾股定理,a2b2c2


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

利用圖形來表示數(shù)量或數(shù)量關(guān)系,也可以利用數(shù)量或數(shù)量關(guān)系來描述圖形特征或圖形之間的關(guān)系,這種思想方法稱為數(shù)形結(jié)合.我們剛學(xué)過的《從面積到乘法公式》就很好地體現(xiàn)了這一思想方法,你能利用數(shù)形結(jié)合的思想解決下列問題嗎?
如圖,一個(gè)邊長(zhǎng)為1的正方形,依次取正方形的
1
2
1
4
,
1
8
,…
1
2n
,根據(jù)圖示我們可以知道:第一次取走
1
2
后還剩
1
2
,即
1
2
=1-
1
2
;前兩次取走
1
2
+
1
4
后還剩
1
4
,即
1
2
+
1
4
=1-
1
4
;前三次取走
1
2
+
1
4
+
1
8
后還剩
1
8
,即
1
2
+
1
4
+
1
8
=1-
1
8
;…前n次取走后,還剩
1
2n
1
2n
,即
1
2
+
1
4
+
1
8
+…
1
2n
1
2
+
1
4
+
1
8
+…
1
2n
=
1-
1
2n
1-
1
2n

利用上述計(jì)算:
(1)
2
3
+
2
9
+
2
27
+…+
2
3n
=
1-
1
3n
1-
1
3n

(2)
1
3
+
2
9
+
4
27
+…+
2n-1
3n
=
1-
2n
3n
1-
2n
3n

(3)2-22-23-24-25-26-…-22011+22012 (本題寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(10分)

問題提出

我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問題解決

如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類別應(yīng)用

(1)已知小麗和小穎購買同一種商品的平均價(jià)格分別為元/千克和元/千克(a、b是正數(shù),且a≠b),試比較小麗和小穎所購買商品的平均價(jià)格的高低.

 (2)試比較圖2和圖3中兩個(gè)矩形周長(zhǎng)M1、N1的大小(b>c).

 

 

 

 

 

 

 

聯(lián)系拓廣

小剛在超市里買了一些物品,用一個(gè)長(zhǎng)方體的箱子“打包”,這個(gè)箱子的尺寸如圖4所示(其中b>a>c>0),售貨員分別可按圖5、圖6、圖7三種方法進(jìn)行捆綁,吻哪種方法用繩最短?哪種方法用繩最長(zhǎng)?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(10分)

問題提出
我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類別應(yīng)用
(1)已知小麗和小穎購買同一種商品的平均價(jià)格分別為元/千克和元/千克(a、b是正數(shù),且a≠b),試比較小麗和小穎所購買商品的平均價(jià)格的高低.
(2)試比較圖2和圖3中兩個(gè)矩形周長(zhǎng)M1、N1的大小(b>c).
聯(lián)系拓廣
小剛在超市里買了一些物品,用一個(gè)長(zhǎng)方體的箱子“打包”,這個(gè)箱子的尺寸如圖4所示(其中b>a>c>0),售貨員分別可按圖5、圖6、圖7三種方法進(jìn)行捆綁,吻哪種方法用繩最短?哪種方法用繩最長(zhǎng)?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省劉潭實(shí)驗(yàn)學(xué)校七年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題

利用圖形來表示數(shù)量或數(shù)量關(guān)系,也可以利用數(shù)量或數(shù)量關(guān)系來描述圖形特征或圖形之間的關(guān)系,這種思想方法稱為數(shù)形結(jié)合.我們剛學(xué)過的《從面積到乘法公式》就很好地體現(xiàn)了這一思想方法,你能利用數(shù)形結(jié)合的思想解決下列問題嗎?

如圖,一個(gè)邊長(zhǎng)為1的正方形,依次取正方形的根據(jù)圖示我們可以知道:第一次取走后還剩,即=1-;前兩次取走+后還剩,即+=1-;前三次取走++后還剩,即++=1-;……前n次取走后,還剩       ,
                      =         .
利用上述計(jì)算:
(1) =            .
(2) =           .
(3) 2-22-23-24-25-26-…-22011+22012(本題寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-平方差公式(帶解析) 題型:解答題

利用圖形來表示數(shù)量或數(shù)量關(guān)系,也可以利用數(shù)量或數(shù)量關(guān)系來描述圖形特征或圖形之間的關(guān)系,這種思想方法稱為數(shù)形結(jié)合.我們剛學(xué)過的《從面積到乘法公式》就很好地體現(xiàn)了這一思想方法,你能利用數(shù)形結(jié)合的思想解決下列問題嗎?
如圖,一個(gè)邊長(zhǎng)為1的正方形,依次取正方形的,根據(jù)圖示我們可以知道:第一次取走后還剩,即=1﹣;前兩次取走+后還剩,即+=1﹣;前三次取走++后還剩,即++=1﹣;…前n次取走后,還剩 _________ ,即 _________ = _________ 
利用上述計(jì)算:
(1)= _________ 
(2)= _________ 
(3)2﹣22﹣23﹣24﹣25﹣26﹣…﹣22011+22012(本題寫出解題過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案