已知二次函數(shù)的圖象如圖所示,
下列結(jié)論:①   ②   ③    ④    ⑤
其中正確的有(     )個(gè)
A.1B.2C.3D.4
C

試題分析:由題意可知,,對(duì)稱軸是。所以,當(dāng)x=0時(shí),c在x軸下方,所以,由于函數(shù)和x軸有兩個(gè)焦點(diǎn),所以,所以錯(cuò)誤,故符合條件的有3個(gè),故選C
點(diǎn)評(píng):本題屬于對(duì)數(shù)形結(jié)合思想的綜合考查和運(yùn)用分析
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:是方程的兩個(gè)實(shí)數(shù)根,且,拋物線的圖像經(jīng)過點(diǎn)A()、B().

(1)求這個(gè)拋物線的解析式;
(2) 設(shè)(1)中拋物線與軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,
試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3) P是線段OC上的一點(diǎn),過點(diǎn)PPH軸,與拋物線交于H點(diǎn),
若直線BC把△PCH分成面積之比為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角梯形OABC中,AB∥OC,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)C在x軸正半軸上,點(diǎn)B坐標(biāo)為(2,),∠BCO=60°,OH⊥BC于點(diǎn)H.動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.

(1)求OH的長(zhǎng);
(2)若△OPQ的面積為S(平方單位).求S與t之間的函數(shù)關(guān)系式.并求t為何值時(shí),△OPQ的面積最大,最大值是多少;
(3)設(shè)PQ與OB交于點(diǎn)M.①當(dāng)△OPM為等腰三角形時(shí),求(2)中S的值. ②探究線段OM長(zhǎng)度的最大值是多少,直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,將∠ABC對(duì)折,使點(diǎn)C的對(duì)應(yīng)點(diǎn)H恰好落在直線AB上,折痕交AC于點(diǎn)O,以點(diǎn)O為坐標(biāo)原點(diǎn),AC所在直線為x軸建立平面直角坐標(biāo)系

(1)求過A、B、O三點(diǎn)的拋物線解析式;
(2)若在線段AB上有一動(dòng)點(diǎn)P,過P點(diǎn)作x軸的垂線,交拋物線于M,設(shè)PM的長(zhǎng)度等于d,試探究d有無最大值,如果有,請(qǐng)求出最大值,如果沒有,請(qǐng)說明理由.
(3)若在拋物線上有一點(diǎn)E,在對(duì)稱軸上有一點(diǎn)F,且以O(shè)、A、E、F為頂點(diǎn)的四邊形為平行四邊形,試求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列各圖中有可能是函數(shù),圖象的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB =" 2OA" = 4.

(1)求該拋物線的函數(shù)表達(dá)式;
(2)設(shè)P是(1)中拋物線上的一個(gè)動(dòng)點(diǎn),以P為圓心,R為半徑作⊙P,求當(dāng)⊙P與拋物線的對(duì)稱軸lx軸均相切時(shí)點(diǎn)P的坐標(biāo).
(3)動(dòng)點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)B出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),過點(diǎn)E作EG//y軸,交AC于點(diǎn)G(如圖2).若E、F兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t.則當(dāng)t為何值時(shí),△EFG的面積是△ABC的面積的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

,拋物線x軸于點(diǎn)Q、M,交y軸于點(diǎn)P,點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為N。

(1)求點(diǎn)M、N的坐標(biāo),并判斷四邊形NMPQ的形狀;
(2)如圖,坐標(biāo)系中有一正方形ABCD,其中AB=2cm且CD⊥x軸,CD的中點(diǎn)E與Q點(diǎn)重合,正方形ABCD以1cm/s的速度沿射線QM運(yùn)動(dòng),當(dāng)正方形ABCD完全進(jìn)入四邊形QPMN時(shí)立即停止運(yùn)動(dòng).
①當(dāng)正方形ABCD與四邊形NMPQ的交點(diǎn)個(gè)數(shù)為2時(shí),求兩四邊形重疊部分的面積y與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
②求運(yùn)動(dòng)幾秒時(shí),重疊部分的面積為正方形ABCD面積
的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線軸于點(diǎn),交軸于點(diǎn),在軸上方的拋物線上有兩點(diǎn),它們關(guān)于軸對(duì)稱,點(diǎn)軸左側(cè).于點(diǎn),于點(diǎn),四邊形與四邊形的面積分別為6和10,則的面積之和為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下列材料:
我們知道,一次函數(shù)ykxb的圖象是一條直線,而ykxb經(jīng)過恒等變形可化為直線的另一種表達(dá)形式:AxBxC=0(AB、C是常數(shù),且A、B不同時(shí)為0).如圖1,點(diǎn)Pm,n)到直線lAxBxC=0的距離(d)計(jì)算公式是:d 

例:求點(diǎn)P(1,2)到直線y x的距離d時(shí),先將y x化為5x-12y-2=0,再由上述距離公式求得d  
解答下列問題:
如圖2,已知直線y=-x-4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線yx2-4x+5上的一點(diǎn)M(3,2).

(1)求點(diǎn)M到直線AB的距離.
(2)拋物線上是否存在點(diǎn)P,使得△PAB的面積最小?若存在,求出點(diǎn)P的坐標(biāo)及△PAB面積的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案