已知矩形ABCD和點(diǎn)P,當(dāng)點(diǎn)P在圖1中的位置時(shí),則有結(jié)論:S△PBC=S△PAC+
S△PCD  理由:過點(diǎn)P作EF垂直BC,分別交AD、BC于E、F兩點(diǎn).
∵ S△PBC+S△PAD=BC·PF+AD·PE=BC(PF+PE)=BC·EF=S矩形ABCD
又∵ S△PAC+S△PCD+S△PAD=S矩形ABCD
∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD
∴ S△PBC=S△PAC+S△PCD
請(qǐng)你參考上述信息,當(dāng)點(diǎn)P分別在圖2、圖3中的位置時(shí),S△PBC、S△PAC、S△PCD
有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你對(duì)上述兩種情況的猜想,并選擇其中一種情況的猜想給
予證明.
猜想結(jié)果:圖2結(jié)論S△PBC=S△PAC+S△PCD; 
圖3結(jié)論S△PBC=S△PAC-S△PCD(3分)
證明:如圖2,過點(diǎn)P作EF垂直AD,分別交AD、BC于E、F兩點(diǎn).

∵ S△PBC=BC·PF=BC·PE+BC·EF                                  
=AD·PE+BC·EF=S△PAD+S矩形ABCD
S△PAC+S△PCD=S△PAD+S△ADC
=S△PAD+S矩形ABCD
∴ S△PBC=S△PAC+S△PCD
如果證明圖3結(jié)論可參考上面評(píng)分標(biāo)準(zhǔn)給分(12分)
分析圖2,先過點(diǎn)P作EF垂直AD,分別交AD、BC于E、F兩點(diǎn),利用三角形的面積公式可知,經(jīng)過化簡,等量代換,可以得到SPBC=SPAD+S矩形ABCD,而SPAC+SPCD=SPAD+S矩形ABCD,故有SPBC=SPAC+SPCD
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知梯形中位線長為5cm,面積為20cm2,則高是(   )
A.2cmB.4cmC.6cmD.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙無重疊的四邊形EFGH,EH=12cm,EF=16cm,則邊AD的長是【   】
A.12cmB.16cmC.20cmD.28cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

把一個(gè)正方形分成面積相等的四個(gè)三角形的方法有很多,除了可以分成能相互全等的四個(gè)三角形外(連接對(duì)角線即可,如圖(1)),你還能用三種不同的方法將正方形分成面積相等的四個(gè)不全部全等的三角形嗎?請(qǐng)分別在圖(2)、(3)、(4)中畫出示意圖。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD中,點(diǎn)E在AB邊上,且AE∶EB=2∶1,AF⊥DE于G交BC
于F,則△AEG的面積與四邊形BEGF的面積之比為                    (    ) 
A.1∶2B.4∶9C.1∶4D.2∶3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在四邊形ABCD中,AB=CD,BC=AD,若∠A=110°,則∠C=        °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD的周長為12,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為( ▲ )
A.B.C.D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,矩形紙片ABCD,AB=2,點(diǎn)E在BC上,且AE=EC,若將紙片沿AE折疊,點(diǎn)B恰好落在AC上,則線段AC的長為      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在下面所給的圖形中,若連接BC,則四邊形ABCD是矩形,四邊形CBEF是平行四邊形。用鉛筆和三角板畫圖:

小題1:在圖1中畫出兩條線段,將整個(gè)圖形分成面積相等的兩個(gè)部分(不寫畫法);
小題2:在圖2中畫出一條線段,還能夠?qū)⒄麄(gè)圖形分成面積相等的兩個(gè)部分,并寫出畫法的主要步驟。

查看答案和解析>>

同步練習(xí)冊(cè)答案