【題目】如圖,已知⊙O是△ABC的外接圓,且AB=BC=CD,AB∥CD,連接BD.
(1)求證:BD是⊙O的切線;
(2)若AB=10,cos∠BAC=,求BD的長(zhǎng)及⊙O的半徑.
【答案】(1)證明見(jiàn)解析;(2)BD=12,⊙O的半徑為
【解析】(1)如圖1,作直徑BE,半徑OC,證明四邊形ABDC是平行四邊形,得∠A=∠D,由等腰三角形的性質(zhì)得:∠CBD=∠D=∠A=∠OCE,可得∠EBD=90°,所以BD是⊙O的切線;
(2)如圖2,根據(jù)三角函數(shù)設(shè)EC=3x,EB=5x,則BC=4x根據(jù)AB=BC=10=4x,得x的值,求得⊙O的半徑為,作高線CG,根據(jù)等腰三角形三線合一得BG=DG,根據(jù)三角函數(shù)可得結(jié)論.
(1)如圖1,作直徑BE,交⊙O于E,連接EC、OC,
則∠BCE=90°,
∴∠OCE+∠OCB=90°,
∵AB∥CD,AB=CD,
∴四邊形ABDC是平行四邊形,
∴∠A=∠D,
∵OE=OC,
∴∠E=∠OCE,
∵BC=CD,
∴∠CBD=∠D,
∵∠A=∠E,
∴∠CBD=∠D=∠A=∠OCE,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠OBC+∠CBD=90°,
即∠EBD=90°,
∴BD是⊙O的切線;
(2)如圖2,∵cos∠BAC=cos∠E=,
設(shè)EC=3x,EB=5x,則BC=4x,
∵AB=BC=10=4x,
x=,
∴EB=5x=,
∴⊙O的半徑為,
過(guò)C作CG⊥BD于G,
∵BC=CD=10,
∴BG=DG,
Rt△CGD中,cos∠D=cos∠BAC=,
∴,
∴DG=6,
∴BD=12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在Rt△ABC中,∠C=90°,AC=BC=,直線L過(guò)AB中點(diǎn)O,過(guò)點(diǎn)A、C分別向直線L作垂線,垂足分別為E、F.若CF=1,則EF=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=21,BC=13,D是AC邊上一點(diǎn),BD=12,AD=16,
(1)若E是邊AB的中點(diǎn),求線段DE的長(zhǎng)
(2)若E是邊AB上的動(dòng)點(diǎn),求線段DE的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+x+c(a≠0)與x軸交于點(diǎn)A,B兩點(diǎn),
其中A(-1,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線的表達(dá)式及點(diǎn)B坐標(biāo);
(2)點(diǎn)E是線段BC上的任意一點(diǎn)(點(diǎn)E與B、C不重合),過(guò)點(diǎn)E作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G.
①設(shè)點(diǎn)E的橫坐標(biāo)為m,用含有m的代數(shù)式表示線段EF的長(zhǎng);
②線段EF長(zhǎng)的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,垂足為D.
(1)求作∠ABC的平分線,分別交AD,AC于P,Q兩點(diǎn);(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
(2)證明AP=AQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中.
(1)作出△ABC關(guān)于軸對(duì)稱的,并寫(xiě)出三個(gè)頂點(diǎn)的坐標(biāo): ( 。,( 。,( );
(2)直接寫(xiě)出△ABC的面積為 ;
(3)在軸上畫(huà)點(diǎn)P,使PA+PC最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在⊙O的直徑AB的延長(zhǎng)線上,PC為⊙O的切線,點(diǎn)C為切點(diǎn),連接AC,過(guò)點(diǎn)A作PC的垂線,點(diǎn)D為垂足,AD交⊙O于點(diǎn)E.
(1)如圖1,求證:∠DAC=∠PAC;
(2)如圖2,點(diǎn)F(與點(diǎn)C位于直徑AB兩側(cè))在⊙O上,,連接EF,過(guò)點(diǎn)F作AD的平行線交PC于點(diǎn)G,求證:FG=DE+DG;
(3)在(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四邊形中,,,點(diǎn),分別在射線,上,滿足.
(1)如圖1,若點(diǎn),分別在線段,上,求證:;
(2)如圖2,若點(diǎn),分別在線段延長(zhǎng)線與延長(zhǎng)線上,請(qǐng)直接寫(xiě)出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)A(8,0)、B(0,8)兩點(diǎn)的直線y1與直線y2=x+2交于點(diǎn)C.直線y2與x軸、y軸分別交于點(diǎn)D和點(diǎn)E.
(1)動(dòng)點(diǎn)M從A點(diǎn)出發(fā)沿AB運(yùn)動(dòng),運(yùn)動(dòng)的速度是每秒1個(gè)單位長(zhǎng)度:當(dāng)點(diǎn)M運(yùn)動(dòng)到B點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)M運(yùn)動(dòng)時(shí)間為t秒,△ADM的面積為S,求S與t的函數(shù)關(guān)系式.
(2)在y軸上是否存在點(diǎn)P,使△ACP為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com