【題目】如圖①,矩形紙片ABCD的邊長(zhǎng)分別為a、b(a<b),點(diǎn)M、N分別為邊AD、BC上兩點(diǎn)(點(diǎn)A、C除外),連接MN.
(1)如圖②,分別沿ME、NF 將MN兩側(cè)紙片折疊,使點(diǎn)A、C分別落在MN上的A′、C′處,直接寫出ME與FN的位置關(guān)系;
(2)如圖③,當(dāng)MN⊥BC 時(shí),仍按(1)中的方式折疊,請(qǐng)求出四邊形A′EBN與四邊形C′FDM 的周長(zhǎng)(用含a的代數(shù)式表示),并判斷四邊形A′EBN與四邊形C′FDM周長(zhǎng)之間的數(shù)量關(guān)系;
(3)如圖④,若對(duì)角線BD與MN交于點(diǎn)O,分別沿BM、DN將MN兩側(cè)紙片折疊,折疊后,點(diǎn)A、C恰好都落在點(diǎn)O處,并且得到的四邊形BNDM是菱形,請(qǐng)你探索a、b之間的數(shù)量關(guān)系.
【答案】(1)EM∥NF ;(2)的周長(zhǎng)與的周長(zhǎng)相等;(3)
【解析】(1)先根據(jù)翻折變換的性質(zhì)得到∠EMN=∠AMN,∠FNC′=∠MNC,再由平行線的性質(zhì)可得到∠AMN=∠MNC,由平行線的判定定理即可得到ME∥FN;
(2)由折疊得知:A′E=AE,根據(jù)四邊形A′EBN是矩形,即可求出四邊形A′EBN的即四邊形C′FDM的周長(zhǎng);
(3)根據(jù)折疊的性質(zhì)可知OD=CD=OB=a,在△BCD中利用勾股定理即可求出b的值.
(1)EM∥NF ;
(2)∵矩形ABCD,
∴∠A=90°=∠B,
∵△AEM沿EM折疊到△
∴∠,AE=
∵MN⊥BC,
∴∠MNB=90°,
∴有矩形 ,
∴其周長(zhǎng)為 ,
同理 四邊形也為矩形,周長(zhǎng)為,
,
∴的周長(zhǎng)與的周長(zhǎng)相等;
(3)∵四邊形BNDM是菱形,
∴BM=MD,BD⊥MN,BO=DO,MO=NO,∠MBO=∠NBO,
∵△ABM沿BM折疊到△OBM,
∴AB=OB,AM=MO,∠ABM=∠OBM,
∵四邊形ABCD是矩形,
∴∠ABC=90°,
∴∠MBO=30°,
在Rt△MBO中,∠MOB=90°,
∴BM=2MO,
設(shè)MO=x,BM=2x,
BO=
AD=AM+MD=BM+MO=3x
∴,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=2cm,C為 的中點(diǎn),D、E分別是OA、OB的中點(diǎn),則圖中陰影部分的面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖1,拋物線 與 軸交于A,B兩點(diǎn),點(diǎn)P在拋物線上(點(diǎn)P與A,B兩點(diǎn)不重合),如果△ABP的三邊滿足 ,則稱點(diǎn)P為拋物線 的勾股點(diǎn)。
(1)直接寫出拋物線 的勾股點(diǎn)的坐標(biāo);
(2)如圖2,已知拋物線C: 與 軸交于A,B兩點(diǎn),點(diǎn)P(1, )是拋物線C的勾股點(diǎn),求拋物線C的函數(shù)表達(dá)式;
(3)在(2)的條件下,點(diǎn)Q在拋物線C上,求滿足條件 的點(diǎn)Q(異于點(diǎn)P)的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全體麗水人民的努力下,我市剿滅劣V類水“河道清淤”工程取得了階段性成果,下面的右表是全市十個(gè)縣(市、區(qū))指標(biāo)任務(wù)數(shù)的統(tǒng)計(jì)表;左圖是截止2017年3月31日和截止5月4日,全市十個(gè)縣(市、區(qū))指標(biāo)任務(wù)累計(jì)完成數(shù)的統(tǒng)計(jì)圖.
(1)截止3月31日,完成進(jìn)度(完成進(jìn)度=累計(jì)完成數(shù)÷任務(wù)數(shù)×100%)最快、電慢的縣(市、區(qū))分別是哪一個(gè)?
(2)求截止5月4日全市的完成進(jìn)度;
(3)請(qǐng)結(jié)合圖形信息和數(shù)據(jù)分析,對(duì)I且完成指標(biāo)任務(wù)的行動(dòng)過(guò)程和成果進(jìn)行評(píng)價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,∠BAD=60°
(1)如圖1,點(diǎn)E為線段AB的中點(diǎn),連接DE、CE,若AB=4,求線段EC的長(zhǎng);
(2)如圖2,M為線段AC上一點(diǎn)(不與A、C重合),以AM為邊向上構(gòu)造等邊三角形AMN,連接NC、DM,Q為線段NC的中點(diǎn),連接DQ、MQ,判斷DM與DQ的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為-10,B點(diǎn)對(duì)應(yīng)的數(shù)為90.
(1)請(qǐng)寫出與A,B兩點(diǎn)距離相等的M點(diǎn)對(duì)應(yīng)的數(shù);
(2)現(xiàn)在有一只電子螞蟻P從B點(diǎn)出發(fā)時(shí),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,求C點(diǎn)對(duì)應(yīng)的數(shù)是多少.
(3)若當(dāng)電子螞蟻P從B點(diǎn)出發(fā)時(shí),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)的時(shí)間兩只電子螞蟻在數(shù)軸上相距35個(gè)單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)生物學(xué)研究結(jié)果,青春期男女生身高增長(zhǎng)速度呈現(xiàn)如下圖規(guī)律,由圖可以判斷,下列說(shuō)法錯(cuò)誤的是( )
A.男生在13歲時(shí)身高增長(zhǎng)速度最快
B.女生在10歲以后身高增長(zhǎng)速度放慢
C.11歲時(shí)男女生身高增長(zhǎng)速度基本相同
D.女生身高增長(zhǎng)的速度總比男生慢
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上有A、B兩點(diǎn),所表示的數(shù)分別為n,n+6,A點(diǎn)以每秒5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),同時(shí)B點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度也向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t 秒.
(1)當(dāng)n=1時(shí),求AB的值;
(2)當(dāng)t 為何值時(shí),A、B兩點(diǎn)重合;
(3)在上述運(yùn)動(dòng)的過(guò)程中,若P為線段AB的中點(diǎn),數(shù)軸上點(diǎn)C所表示的數(shù)為n+10是否存在t 的值,使得線段PC=4,若存在,求t 的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)自然數(shù)的立方,可以分裂成若干個(gè)連續(xù)奇數(shù)的和,例如:23,33和43分別可以按如圖所示的方式“分裂”,則63“分裂”出的奇數(shù)中,最大的奇數(shù)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com