【題目】如圖①,把∠α=60°的一個單獨(dú)的菱形稱作一個基本圖形,將此基本圖形不斷的復(fù)制并平移,使得下一個菱形的一個頂點(diǎn)與前一個菱形的中線重合,這樣得到圖②,圖③,…
(1)觀察以上圖形并完成下表:
圖形名稱 | 基本圖形的個數(shù) | 菱形的個數(shù) |
圖① | 1 | 1 |
圖② | 2 | 3 |
圖③ | 3 | 7 |
圖④ | 4 | |
… | … | … |
猜想:在圖(n)中,菱形的個數(shù)為(用含有n(n≥3)的代數(shù)式表示);
(2)如圖,將圖(n)放在直角坐標(biāo)系中,設(shè)其中第一個基本圖的對稱中心O1的坐標(biāo)為(x1 , 1),則x1=;第2017個基本圖形的中心O2017的坐標(biāo)為 .
【答案】
(1)11;4n﹣5
(2);(2017 ,1)
【解析】解:(1.)由題意可知,圖③中菱形的個數(shù)7=3+4×(3﹣2), 圖④中,菱形的個數(shù)為3+4×(4﹣2)=11,
∵當(dāng)n≥3時,每多一個基本圖形就會多出4個菱形,
∴圖(n)中,菱形的個數(shù)為3+4(n﹣2)=4n﹣5,
故答案為:11,4n﹣5;
(2.)過點(diǎn)O1作O1A⊥y軸,O1B⊥x軸,則OA=1,
由菱形的性質(zhì)知∠BAO1=30°,
∴AO1= = = ,
即x1= ,
中心O2的坐標(biāo)為(2 ,1)、O3的坐標(biāo)為(3 ,1)…,O2017的坐標(biāo)為(2017 ,1),
故答案為: ,(2017 ,1).
(1)根據(jù)從第3個圖形開始,每多一個基本圖形就會多出4個菱形解答即可;(2)根據(jù)菱形的性質(zhì)求得心O1的坐標(biāo)為( ,1),據(jù)此可得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B為拋物線E:y2=2px(p>0)上異于頂點(diǎn)O的兩點(diǎn),△AOB是等邊三角形,其面積為48 ,則p的值為( )
A.2
B.2
C.4
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,點(diǎn)O為△ABD的外心,點(diǎn)C為直徑BD下方弧BCD上一點(diǎn),且不與點(diǎn)B,D重合,∠ACB=∠ABD=45°,則下列對AC,BC,CD之間的數(shù)量關(guān)系判斷正確的是( )
A.AC=BC+CD
B. AC=BC+CD
C. AC=BC+CD
D.2AC=BC+CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在元旦來臨之際,騰飛中學(xué)舉行了隆重的慶;顒,在校圖書館展開了書法、國學(xué)誦讀、演講、征文四個比賽項(xiàng)目(每人只參加一個項(xiàng)目),“希望班”全班同學(xué)都參加了比賽,為了解這個班同學(xué)參加各項(xiàng)比賽的情況,收集整理數(shù)據(jù)后,繪制以下不完整的折線統(tǒng)計(jì)圖(圖1)和扇形統(tǒng)計(jì)圖(圖2),根據(jù)圖表中的信息解答下列各題:
(1)請求出“希望班”全班人數(shù);
(2)請把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)歡歡和樂樂參加了比賽,請用“列表法”或“畫樹狀圖法”求出他們參加的比賽項(xiàng)目相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司銷售部為了定制下個月的銷售計(jì)劃,對20位銷售員本月的銷售量進(jìn)行了統(tǒng)計(jì),繪制成如圖所示的統(tǒng)計(jì)圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是( )
A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在△ABC的內(nèi)部且DB=DC,點(diǎn)E,F(xiàn)在△ABC的外部,F(xiàn)B=FA,EA=EC,∠FBA=∠DBC=∠ECA.
(1)①填空:△ACE∽∽;
(2)求證:△CDE∽△CBA;
(3)求證:△FBD≌△EDC;
(4)若點(diǎn)D在∠BAC的平分線上,判斷四邊形AFDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝50件,每件售價300元,若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買1件,所買的每件服裝的售價均降低2元.已知該服裝成本是每件200元,設(shè)顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫圓O,使圓O過A、D兩點(diǎn),且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
(2)求證:BC與圓O相切;
(3)設(shè)圓O交AB于點(diǎn)E,若AE=2,CD=2BD.求線段BE的長和弧DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com