(2004湟中)三角形兩邊長分別為3和6,第三邊是方程的解,則這個三角形的周長是

[  ]

A.11
B.13
C.11或13
D.11和13
答案:B
解析:

方程的解是,只有x=4符合,則346=13


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、數(shù)學大師陳省身于2004年12月3日在天津逝世,陳省身教授在微分幾何等領域做出了杰出的貢獻,是獲得沃爾夫獎的惟一華人,他曾經(jīng)指出,平面幾何中有兩個重要定理,一個是勾股定理,另一個是三角形內角和定理,后者表明平面三角形可以千變萬化,但是三個內角的和是不變量,下列幾個關于不變量的敘述:
(1)邊長確定的平行四邊形ABCD,當A變化時,其任意一組對角之和是不變的;
(2)當多邊形的邊數(shù)不斷增加時,它的外角和不變;
(3)當△ABC繞頂點A旋轉時,△ABC各內角的大小不變;
(4)在放大鏡下觀察,含角α的圖形放大時,角α的大小不變;
(5)當圓的半徑變化時,圓的周長與半徑的比值不變;
(6)當圓的半徑變化時,圓的周長與面積的比值不變.
其中錯誤的敘述有(  )

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《三角形》(11)(解析版) 題型:解答題

(2004•青島)把兩個全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點逆時針旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉過程中,BH與CK有怎樣的數(shù)量關系四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結論;
(2)連接HK,在上述旋轉過程中,設BH=x,△GKH的面積為y,求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的?若存在,求出此時x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年山東省青島市中考數(shù)學試卷(1)(解析版) 題型:解答題

(2004•青島)把兩個全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點逆時針旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉過程中,BH與CK有怎樣的數(shù)量關系四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結論;
(2)連接HK,在上述旋轉過程中,設BH=x,△GKH的面積為y,求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的?若存在,求出此時x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年山東省青島市中考數(shù)學試卷(1)(解析版) 題型:解答題

(2004•青島)如圖,在△ABC中,AB=AC=a,M為底邊BC上的任意一點,過點M分別作AB、AC的平行線交AC于P,交AB于Q.
(1)求四邊形AQMP的周長;
(2)寫出圖中的兩對相似三角形(不需證明);
(3)M位于BC的什么位置時,四邊形AQMP為菱形并證明你的結論.

查看答案和解析>>

同步練習冊答案