【題目】在平面直角坐標(biāo)系中,正方形的位置如圖所示,點的坐標(biāo)為,點的坐標(biāo)為,延長交軸于點,作正方形;延長交軸于點,作正方形……按這樣的規(guī)律進行下去,第1個正方形的面積為_____;第4個正方形的面積為____.
【答案】5;
【解析】
由點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2).即可求得OA與OD的長,然后由勾股定理即可求得AD的長,繼而求得第1個正方形ABCD的面積;先證得△DOA∽△ABA1,然后由相似三角形的對應(yīng)邊成比例,可求得A1B的長,即可求得A1C的長,即可得第2個正方形A1B1C1C的面積;以此類推,可得第3個、第4個正方形的面積.
解:∵點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2).
∴OA=1,OD=2,
在Rt△AOD中,AD=,
∴正方形ABCD的面積為:()2=5;
∵四邊形ABCD是正方形,
∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,
∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,
∴∠ADO=∠BAA1,
∵∠DOA=∠ABA1,
∴△DOA∽△ABA1,
∴,即,
解得:A1B=,
∴A1C=A1B+BC= ,
∴正方形A1B1C1C的面積為:()2=;
∵第1個正方形ABCD的面積為:5;
第2個正方形A1B1C1C的面積為:=
同理可得:第3個正方形A2B2C2C1的面積為:=()2×5;
∴第4個正方形A3B3C3C2的面積為:()3×5.
故答案為:5,()3×5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個圓,一只電子跳蚤在標(biāo)有數(shù)字的五個點上跳躍.若它停在奇數(shù)點上時,則一次沿順時針方向跳兩個點;若停在偶數(shù)點上時,則下一次沿逆時針方向跳一個點.若這只跳蚤從1這點開始跳,則經(jīng)過2019次跳后它所停在的點對應(yīng)的數(shù)為( )
A. 1 B. 2 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:Rt△ABC中,∠ACB=90°,AC=BC.
(1)如圖1,點D是BC邊上一點(不與點B,C重合),連接AD,過點B作BE⊥AD,交AD的延長線于點E,連接CE.若∠BAD=α,求∠DBE的大。ㄓ煤α的式子表示);
(2)如圖2,點D在線段BC的延長線上時,連接AD,過點B作BE⊥AD,垂足E在線段AD上,連接CE.
①依題意補全圖2;
②用等式表示線段EA,EB和EC之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點,F是線段BC上的動點,將ΔEBF沿EF所在直線折疊得到ΔEB' F,連接B' D,則B' D的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
(1)已知:如圖①,△ABC中請你用尺規(guī)在BC邊上找一點D,使得點A到點BC的距離最短.
(2)托勒密(Ptolemy)定理指出,圓的內(nèi)接四邊形兩對對邊乘積的和等于兩條對角線的乘積.如圖②,P是正△ABC外接圓的劣弧BC上任一點(不與B、C重合),請你根據(jù)托勒密(Ptolemy)定理證明:PA=PB+PC
問題解決:
(3)如圖③,某學(xué)校有一塊兩直角邊長分別為30m、60m的直角三角形的草坪,現(xiàn)準備在草坪內(nèi)放置一對石凳及垃圾箱在點P處,使P到A、B、C三點的距離之和最小,那么是否存在符合條件的點P?若存在,請作出點P的位置,并求出這個最短距離(結(jié)果保留根號);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(點在點的左側(cè)),與軸交于點,點為拋物線的頂點.
(1)若點坐標(biāo)為,求拋物線的解析式和點的坐標(biāo);
(2)若點為拋物線對稱軸上一點,且點的縱坐標(biāo)為,點為拋物線在軸上方一點,若以、、、為頂點的四邊形為平行四邊形時,求的值;
(3)直線與(1)中的拋物線交于點、(如圖2),將(1)中的拋物線沿著該直線方向進行平移,平移后拋物線的頂點為,與直線的另一個交點為,與軸的交點為,在平移的過程中,求的長度;當(dāng)時,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進價為每件30元,售價為每件40元,每周可賣出180件;如果每件商品的售價每上漲1元,則每周就會少賣出5件,但每件售價不能高于50元,設(shè)每件商品的售價上漲x元(x為整數(shù)),每周的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價為多少元時,每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價定為多少元時,每周的利潤恰好是2145元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,平分,交于點,點在上,經(jīng)過兩點,交于點,交于點.
(1)求證:是的切線;
(2)若的半徑是,是弧的中點,求陰影部分的面積(結(jié)果保留和根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:
①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的是( 。
A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com