如果3x+7=5,那么3x=5+7

(  )

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列解方程組的方法,然后解答問(wèn)題:
解方程組
14x+15y=16①
17x+18y=19②
時(shí),由于x、y的系數(shù)及常數(shù)項(xiàng)的數(shù)值較大,如果用常規(guī)的代入消元法、加減消元法來(lái)解,那將是計(jì)算量大,且易出現(xiàn)運(yùn)算錯(cuò)誤,而采用下面的解法則比較簡(jiǎn)單:
②-①得:3x+3y=3,所以x+y=1③
③×14得:14x+14y=14④
①-④得:y=2,從而得x=-1
所以原方程組的解是
x=-1①
y=2②

(1)請(qǐng)你運(yùn)用上述方法解方程組
2005x+2006y=2007
2008x+2009y=2010

(2)請(qǐng)你直接寫(xiě)出方程組
1993x+1994y=1995
2007x+2008y=2009
的解是
 

(3)猜測(cè)關(guān)于x、y的方程組
mx+(m+1)y=m+2
nx+(n+1)y=n+2
(m≠n)的解是什么?并用方程組的解加以驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解答題
①當(dāng)m取何值時(shí),關(guān)于x的方程:3x-2=4與5x-1=-m的解相等?
②一堆小麥用8個(gè)編織袋來(lái)裝,以每袋55千克為標(biāo)準(zhǔn),超過(guò)的記作為正數(shù),不足的記作為負(fù)數(shù),現(xiàn)記錄如下:(單位:千克)
+2,-3,+2,+1,-2,-1,0,-2
(1)這堆小麥共重多少千克?
(2)若每千克小麥的售價(jià)為1.2元,則這堆小麥可賣(mài)多少錢(qián)?
③探索規(guī)律:觀察下面由“※”組成的圖案和算式,解答問(wèn)題:精英家教網(wǎng)
(1)請(qǐng)猜想1+3+5+7+9+…+19=
 
;
(2)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
 
;
(3)請(qǐng)用上述規(guī)律計(jì)算:103+105+107+…+2003+2005.
④在左邊的日歷中,用一個(gè)正方形任意圈出二行二列四個(gè)數(shù),
精英家教網(wǎng)精英家教網(wǎng)
若在第二行第二列的那個(gè)數(shù)表示為a,其余各數(shù)分別為b,c,d.
精英家教網(wǎng)
(1)分別用含a的代數(shù)式表示b,c,d這三個(gè)數(shù).
(2)求這四個(gè)數(shù)的和(用含a的代數(shù)式表示,要求合并同類(lèi)項(xiàng)化簡(jiǎn))
(3)這四個(gè)數(shù)的和會(huì)等于51嗎?如果會(huì),請(qǐng)算出此時(shí)a的值,如果不會(huì),說(shuō)明理由.(要求列方程解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

解答題
①當(dāng)m取何值時(shí),關(guān)于x的方程:3x-2=4與5x-1=-m的解相等?
②一堆小麥用8個(gè)編織袋來(lái)裝,以每袋55千克為標(biāo)準(zhǔn),超過(guò)的記作為正數(shù),不足的記作為負(fù)數(shù),現(xiàn)記錄如下:(單位:千克)
+2,-3,+2,+1,-2,-1,0,-2
(1)這堆小麥共重多少千克?
(2)若每千克小麥的售價(jià)為1.2元,則這堆小麥可賣(mài)多少錢(qián)?
③探索規(guī)律:觀察下面由“※”組成的圖案和算式,解答問(wèn)題:
(1)請(qǐng)猜想1+3+5+7+9+…+19=______;
(2)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n+1)=______;
(3)請(qǐng)用上述規(guī)律計(jì)算:103+105+107+…+2003+2005.
④在左邊的日歷中,用一個(gè)正方形任意圈出二行二列四個(gè)數(shù),

若在第二行第二列的那個(gè)數(shù)表示為a,其余各數(shù)分別為b,c,d.

(1)分別用含a的代數(shù)式表示b,c,d這三個(gè)數(shù).
(2)求這四個(gè)數(shù)的和(用含a的代數(shù)式表示,要求合并同類(lèi)項(xiàng)化簡(jiǎn))
(3)這四個(gè)數(shù)的和會(huì)等于51嗎?如果會(huì),請(qǐng)算出此時(shí)a的值,如果不會(huì),說(shuō)明理由.(要求列方程解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:期中題 題型:解答題

①當(dāng)m取何值時(shí),關(guān)于x的方程:3x﹣2=4與5x﹣1=﹣m的解相等?
②一堆小麥用8個(gè)編織袋來(lái)裝,以每袋55千克為標(biāo)準(zhǔn),超過(guò)的記作為正數(shù),不足的記作為負(fù)數(shù),現(xiàn)記錄如下:(單位:千克)+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2
(1)這堆小麥共重多少千克?
(2)若每千克小麥的售價(jià)為1.2元,則這堆小麥可賣(mài)多少錢(qián)?
③探索規(guī)律:觀察下面由組成的圖案和算式,解答問(wèn)題:
(1)請(qǐng)猜想1+3+5+7+9+…+19=      
(2)請(qǐng)猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)=               ;
(3)請(qǐng)用上述規(guī)律計(jì)算:103+105+107+…+2003+2005.
④在左邊的日歷中,用一個(gè)正方形任意圈出二行二列四個(gè)數(shù),

若在第二行第二列的那個(gè)數(shù)表示為a,其余各數(shù)分別為b,c,d.

(1)分別用含a的代數(shù)式表示b,c,d這三個(gè)數(shù).
(2)求這四個(gè)數(shù)的和(用含a的代數(shù)式表示,要求合并同類(lèi)項(xiàng)化簡(jiǎn))
(3)這四個(gè)數(shù)的和會(huì)等于51嗎?如果會(huì),請(qǐng)算出此時(shí)a的值,如果不會(huì),說(shuō)明理由.(要求列方程解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:山東省期末題 題型:解答題

閱讀下列解方程組的方法,然后解答問(wèn)題:
解方程組時(shí),由于x、y的系數(shù)及常數(shù)項(xiàng)的數(shù)值較大,如果用常規(guī)的代入消元法、加減消元法來(lái)解,那將是計(jì)算量大,且易出現(xiàn)運(yùn)算錯(cuò)誤,而采用下面的解法則比較簡(jiǎn)單:
②﹣①得:3x+3y=3,所以x+y=1③
③×14得:14x+14y=14④
①﹣④得:y=2,從而得x=﹣1
所以原方程組的解是 .
(1)請(qǐng)你運(yùn)用上述方法解方程組
(2)請(qǐng)你直接寫(xiě)出方程組的解是__________;
(3)猜測(cè)關(guān)于x、y的方程組(m≠n)的解是什么?并用方程組的解加以驗(yàn)證.

查看答案和解析>>

同步練習(xí)冊(cè)答案