【題目】如圖,在△ABC中,點(diǎn)D,E,F在邊BC上,點(diǎn)P在線(xiàn)段AD上,若PE∥AB,∠PFD=∠C,點(diǎn)D到AB和AC的距離相等.求證:點(diǎn)D到PE和PF的距離相等.
【答案】證明見(jiàn)解析
【解析】
首先由∠PFD=∠C推出PF∥AC,根據(jù)兩直線(xiàn)平行,同位角相等,即可求得∠EPD=∠BAD,∠DPF=∠CAD,又由點(diǎn)D到AB和AC的距離相等,證得AD是∠BAC的平分線(xiàn),即可證得DP平分∠EPF,根據(jù)角平分線(xiàn)的性質(zhì),即可證得結(jié)論.
∵∠PFD=∠C,∴PF∥AC,∴∠DPF=∠DAC.
∵PE∥AB,∴∠EPD=∠BAD.
∵點(diǎn)D到AB和AC的距離相等,∴AD是∠BAC的角平分線(xiàn),∴∠BAD=∠DAC,∴∠EPD=∠FPD,即DP平分∠EPF,∴點(diǎn)D到PE和PF的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,(1)∠2與∠B是什么角?若∠1=∠B,則∠2與∠B有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
(2)∠3與∠C是什么角?若∠4+∠C=180°,則∠3與∠C有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD的對(duì)角線(xiàn)交于點(diǎn)E,有AE=EC,BE=ED,以AB為直徑的半圓過(guò)點(diǎn)E,圓心為O.
(1)利用圖1,求證:四邊形ABCD是菱形.
(2)如圖2,若CD的延長(zhǎng)線(xiàn)與半圓相切于點(diǎn)F,已知直徑AB=8. ①連結(jié)OE,求△OBE的面積.
②求弧AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(0,6),B(8,0),AB=10,如圖作∠DBO=∠ABO,∠CAy=∠BAO,BD交y軸于點(diǎn)E,直線(xiàn)DO交AC于點(diǎn)C.
(1)①求證:△ACO≌△EDO;②求出線(xiàn)段AC、BD的位置關(guān)系和數(shù)量關(guān)系;
(2)動(dòng)點(diǎn)P從A出發(fā),沿A﹣O﹣B路線(xiàn)運(yùn)動(dòng),速度為1,到B點(diǎn)處停止運(yùn)動(dòng);動(dòng)點(diǎn)Q從B出發(fā),沿B﹣O﹣A運(yùn)動(dòng),速度為2,到A點(diǎn)處停止運(yùn)動(dòng).二者同時(shí)開(kāi)始運(yùn)動(dòng),都要到達(dá)相應(yīng)的終點(diǎn)才能停止.在某時(shí)刻,作PE⊥CD于點(diǎn)E,QF⊥CD于點(diǎn)F.問(wèn)兩動(dòng)點(diǎn)運(yùn)動(dòng)多長(zhǎng)時(shí)間時(shí)△OPE與△OQF全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線(xiàn).如圖:一把直尺壓住射線(xiàn)OB,另一把直尺壓住射線(xiàn)OA并且與第一把直尺交于點(diǎn)P,小明說(shuō):“射線(xiàn)OP就是∠BOA的角平分線(xiàn).”他這樣做的依據(jù)是( 。
A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線(xiàn)上
B. 角平分線(xiàn)上的點(diǎn)到這個(gè)角兩邊的距離相等
C. 三角形三條角平分線(xiàn)的交點(diǎn)到三條邊的距離相等
D. 三角形三條垂直平分線(xiàn)的交點(diǎn)到三個(gè)定點(diǎn)的距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果兩個(gè)等腰三角形的頂角互補(bǔ),頂角的頂點(diǎn)又是同一個(gè)點(diǎn),而且它們的腰也分別相等,則稱(chēng)這兩個(gè)三角形互為“頂補(bǔ)等腰三角形”.
(1)如圖1,若△ABC與△ADE互為“頂補(bǔ)等腰三角形”.∠BAC>90°,AM⊥BC于M,AN⊥ED于N.求證:DE=2AM;
(2)如圖2,在四邊形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,在四邊形ABCD的內(nèi)部是否存在點(diǎn)P,使得△PAD與△PBC互為“頂補(bǔ)等腰三角形”?若存在,請(qǐng)給予證明,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 已知∠1+∠2=180o, ∠3=∠B, 試說(shuō)明∠DEC+∠C=180o. 請(qǐng)完成下列填空:
解:∵∠1+∠2=180o(已知)
又∵∠1+ =180o(平角定義)
∴∠2= (同角的補(bǔ)角相等)
∴ (內(nèi)錯(cuò)角相等,兩直線(xiàn)平行)
∴∠3 = (兩直線(xiàn)平行,內(nèi)錯(cuò)角相等)
又∵∠3=∠B(已知)
∴ (等量代換)
∴ ∥ ( )
∴∠DEC+∠C=180o( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=20°,則∠AOB等于( ).
A. 50° B. 40° C. 30° D. 20°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測(cè)得教學(xué)樓頂總D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.
(結(jié)果精確到0.1m。參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com