【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線于點F.
(1)圖中△APD與哪個三角形全等:_____.
(2)猜想:線段PC、PE、PF之間存在什么關(guān)系:_____.
【答案】(1)△APD≌△CPD(SAS);(2) PC2=PEPF.
【解析】
(1)根據(jù)菱形的性質(zhì)得∠ADP=∠CDP,DA=DC,從而得到△APD與△CPD全等.
(2)根據(jù)菱形的對邊互相平行得∠DCF=∠F,再根據(jù)(1)題的結(jié)論得到∠DCP=∠DAP,從而證得△PAE∽△PFA,然后利用比例線段證得等積式即可.
(1)∵四邊形ABCD為菱形,
∴∠ADP=∠CDP,DC=DA,
在△APD和△CPD中,
,
∴△APD≌△CPD(SAS);
(2)∵四邊形ABCD為菱形,
∴∠DCF=∠F,
∵△APD≌△CPD,
∴∠DCP=∠DAP,
∴∠F=∠PAE,
∠APE=∠FPA
∴△PAE∽△PFA,
∴,
即:PA2=PEPF,
∵P是菱形ABCD的對角線BD上一點,
∴PA=PC,
∴PC2=PEPF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB 為⊙O 的直徑,C 為⊙O 上一點,AD⊥CE 于點 D,AC 平分∠DAB.
(1) 求證:直線 CE 是⊙O 的切線;
(2) 若 AB=10,CD=4,求 BC 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,點P在BC上.若點P為BC的中點,則m=AP2+BPPC的值為多少?若BC邊上有100個不同的點P1,P2,…,P100,且mi=APi2+BPiPiC(i=1,2,…,100),則m=m1+m2+…+m100 的值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標(biāo)為(﹣2,3).
(1)求一次函數(shù)和反比例函數(shù)解析式.
(2)若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.
(3)根據(jù)圖象,直接寫出不等式﹣x+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點,且點A的橫坐標(biāo)為.
(1)求k的值;
(2)若雙曲線y=上點C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點M,在直線AB上有一點P,在雙曲線y=上有一點N,若以O(shè)、M、P、N為頂點的四邊形是有一組對角為60°的菱形,請寫出所有滿足條件的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC,CA=CB=6cm,AB=8cm,點O為△ABC內(nèi)一點(點O不在△ABC邊界上).請你運用圖形旋轉(zhuǎn)和“兩點之間線段最短”等數(shù)學(xué)知識、方法,求出OA+OB+OC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人在玩轉(zhuǎn)盤游戲時,把轉(zhuǎn)盤A、B分別分成4等份、3等份,并在每一份內(nèi)標(biāo)上數(shù)字,如圖所示.游戲規(guī)定:轉(zhuǎn)動兩個轉(zhuǎn)盤停止后,指針必須指到某一數(shù)字,否則重轉(zhuǎn).
(1)請用樹狀圖或列表法列出所有可能的結(jié)果;
(2)若指針?biāo)傅膬蓚數(shù)字都是方程x2-5x+6=0的解時,則甲獲勝;若指針?biāo)傅膬蓚數(shù)字都不是方程x2-5x+6=0的解時,則乙獲勝,問他們兩人誰獲勝的概率大?請分析說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),在方格紙中如何通過平移或旋轉(zhuǎn)這兩種變換,由圖形得到圖形,再由圖形得到圖形?
(2)如圖(1),如果點、點的坐標(biāo)分別為,,寫出點的坐標(biāo);
(3)如圖(2)所示是某設(shè)計師設(shè)計的圖案的一部分,請你運用旋轉(zhuǎn)變換的方法,在方格紙中將圖形繞點順時針依次旋轉(zhuǎn)、、,依次畫出旋轉(zhuǎn)后得到的圖形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com