【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)B的坐標(biāo)是(2,3),點(diǎn)C在x軸的負(fù)半軸上,且AC=6.
(1)直接寫出點(diǎn)C的坐標(biāo).
(2)在y軸上是否存在點(diǎn)P,使得S△POB=S△ABC若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,作射線CH,連接BH,點(diǎn)M在射線CH上運(yùn)動(dòng)(不與點(diǎn)C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)C(-2,0);(2)點(diǎn)P坐標(biāo)為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明見解析.
【解析】
(1)由點(diǎn)A坐標(biāo)可得OA=4,再根據(jù)C點(diǎn)x軸負(fù)半軸上,AC=6即可求得答案;
(2)先求出S△ABC=9,S△BOP=OP,再根據(jù)S△POB=S△ABC,可得OP=6,即可寫出點(diǎn)P的坐標(biāo);
(3)先得到點(diǎn)H的坐標(biāo),再結(jié)合點(diǎn)B的坐標(biāo)可得到BH//AC,然后根據(jù)點(diǎn)M在射線CH上,分點(diǎn)M在線段CH上與不在線段CH上兩種情況分別進(jìn)行討論即可得.
(1)∵A(4,0),
∴OA=4,
∵C點(diǎn)x軸負(fù)半軸上,AC=6,
∴OC=AC-OA=2,
∴C(-2,0);
(2)∵B(2,3),
∴S△ABC=×6×3=9,S△BOP=OP×2=OP,
又∵S△POB=S△ABC,
∴OP=×9=6,
∴點(diǎn)P坐標(biāo)為(0,6)或(0,-6);
(3)∠BMA=∠MAC±∠HBM,證明如下:
∵把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,C(-2,0),
∴H(-2,3),
又∵B(2,3),
∴BH//AC;
如圖1,當(dāng)點(diǎn)M在線段HC上時(shí),過點(diǎn)M作MN//AC,
∴∠MAC=∠AMN,MN//HB,
∴∠HBM=∠BMN,
∵∠BMA=∠BMN+∠AMN,
∴∠BMA=∠HBM+∠MAC;
如圖2,當(dāng)點(diǎn)M在射線CH上但不在線段HC上時(shí),過點(diǎn)M作MN//AC,
∴∠MAC=∠AMN,MN//HB,
∴∠HBM=∠BMN,
∵∠BMA=∠AMN-∠BMN,
∴∠BMA=∠MAC-∠HBM;
綜上,∠BMA=∠MAC±∠HBM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在平行四邊形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿著CB方向勻速移動(dòng),速度為1cm/s;當(dāng)△PNM停止平移時(shí),點(diǎn)Q也停止移動(dòng),如圖②.設(shè)移動(dòng)時(shí)間為t(s)(0<t<4).連接PQ、MQ、MC.解答下列問題:
(1)當(dāng)t為何值時(shí),PQ∥AB?
(2)當(dāng)t=3時(shí),求△QMC的面積;
(3)是否存在某一時(shí)刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】宜昌四中男子籃球隊(duì)在2016全區(qū)籃球比賽中蟬聯(lián)冠軍,讓全校師生倍受鼓舞.在一次與第25中學(xué)的比賽中,運(yùn)動(dòng)員小濤在距籃下4米處跳起投籃,如圖所示,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離為2.5米時(shí),達(dá)到最大高度3.5米,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05米.
(1)建立如圖所示的直角坐標(biāo)系,求拋物線的表達(dá)式;
(2)運(yùn)動(dòng)員小濤的身高是1.8米,在這次跳投中,球在頭頂上方0.25米處出手,問:球出手時(shí),小濤跳離地面的高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是( )
A. 函數(shù)有最小值
B. 對(duì)稱軸是直線x=
C. 當(dāng)x<,y隨x的增大而減小
D. 當(dāng)﹣1<x<2時(shí),y>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把二次函數(shù)y=a(x-h)2+k的圖象先向左平移2個(gè)單位,再向上平移4個(gè)單位,得到二次函數(shù)y= (x+1)2-1的圖象.
(1)試確定a,h,k的值;
(2)指出二次函數(shù)y=a(x-h)2+k的開口方向,對(duì)稱軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,H是△ABC的高AD,BE的交點(diǎn),且DH=DC,則下列結(jié)論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年2月初,在抵御新冠肺炎的工作中,全國(guó)各地口罩嚴(yán)重供應(yīng)不足,某鄉(xiāng)鎮(zhèn)企業(yè)縫紉車間立即轉(zhuǎn)崗做口罩以供應(yīng)本地志愿者和衛(wèi)生系統(tǒng),該車間有技術(shù)工人15人,生產(chǎn)部為了合理制定口罩的日生產(chǎn)定額,統(tǒng)計(jì)了15人某天加工口罩?jǐn)?shù)如下:
車間15名工人某一天加工口罩個(gè)數(shù)統(tǒng)計(jì)表
加工零件數(shù)/個(gè) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)求這一天15名工人加工口罩?jǐn)?shù)的平均數(shù)、中位數(shù)和眾數(shù).
(2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備試行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施,假如你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1) 如圖1,正方形ABCD的邊長(zhǎng)為5,點(diǎn)E是AB上一點(diǎn),點(diǎn)F是AD延長(zhǎng)線上一點(diǎn),且BE=DF,四邊形AEGF是矩形,寫出矩形AEGF的面積y與BE的長(zhǎng)x之間的函數(shù)關(guān)系式;
(2) 如圖2,已知一長(zhǎng)方形打印紙長(zhǎng)20 cm,寬15 cm,現(xiàn)在要在打印紙上打印文稿,上下左右各留出一定距離.設(shè)留出的距離均為x cm,打印文稿面積為y cm2,試寫出y與x之間的關(guān)系式,并求出x的取值范圍.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班為了從甲、乙兩同學(xué)中選出班長(zhǎng),進(jìn)行了一次演講答辯與民主測(cè)評(píng).A、B、C、D、E五位老師作為評(píng)委,對(duì)“演講答辯”情況進(jìn)行評(píng)價(jià),全班50位同學(xué)參與了民主測(cè)評(píng).結(jié)果如下表所示:
表1 演講答辯得分表(單位:分)
A | B | C | D | E | |
甲 | 90 | 92 | 94 | 95 | 88 |
乙 | 89 | 86 | 87 | 94 | 91 |
表2 民主測(cè)評(píng)票數(shù)統(tǒng)計(jì)表(單位:張)
“好”票數(shù) | “較好”票數(shù) | “一般”票數(shù) | |
甲 | 40 | 7 | 3 |
乙 | 42 | 4 | 4 |
規(guī)定:演講答辯得分按“去掉一個(gè)最高分和一個(gè)最低分再算平均分”的方法確定;
民主測(cè)評(píng)得分=“好”票數(shù)×2分+“較好”票數(shù)×1分+“一般”票數(shù)×0分;
綜合得分=演講答辯得分×(1﹣a)+民主測(cè)評(píng)得分×a(0.5≤a≤0.8).
(1)當(dāng)a=0.6時(shí),甲的綜合得分是多少?
(2)a在什么范圍時(shí),甲的綜合得分高?a在什么范圍時(shí),乙的綜合得分高?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com