【題目】近日天氣晴朗,某集團(tuán)公司準(zhǔn)備組織全體員工外出踏青.決定租用甲、乙、丙三種型號(hào)的巴士出行,甲型巴士每輛車的乘載量是乙型巴士的3倍,丙型巴士每輛可乘坐36人.現(xiàn)在旅游公司有甲、乙、丙型巴士若干輛,預(yù)計(jì)給該集團(tuán)公司安排申型、丙型巴士共計(jì)8輛,其余員工安排乙型巴士,每輛巴士均滿載,這樣乘坐乙型巴士和丙型巴士的員工共296人.臨行前,突然有若干人因特殊原因請假,這樣一來剛好可以減少租用一輛乙型包士,且有一輛乙型巴士多出兩個(gè)空位,這樣甲、乙兩種型號(hào)巴士共計(jì)裝載178人;則該集團(tuán)公司共有________名員工.

【答案】416

【解析】

設(shè)甲型巴士a輛,乙型巴士b輛,丙型巴士(8-a)輛,乙型巴士乘載量為x人,由題意列出方程,由整數(shù)解的思想可求解.

解:設(shè)甲型巴士a輛,乙型巴士b輛,丙型巴士(8-a)輛,乙型巴士乘載量為x人,
由題意可得:

,
解得:x=,
1a7,且a為整數(shù),
(不合題意舍去),,(不合題意舍去),


b=4,
∴總?cè)藬?shù)=2×60+4×20+36×6=416(人)
故答案為:416

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:整式的運(yùn)算和分式的化簡
(1)(x+3)2﹣x(x+2);
(2) ÷( +

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,PA切⊙O于A,OP交⊙O于C,連接BC.
(Ⅰ)如圖①,若∠P=20°,求∠BCO的度數(shù);
(Ⅱ)如圖②,過A作弦AD⊥OP于E,連接DC,若OE= CD,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已如兩個(gè)全等的等腰△ABC、△DEF,其中∠ACB=DFE=90°EAB中點(diǎn),△DEF可繞頂點(diǎn)E旋轉(zhuǎn),線段DEEF分別交線段CA,CB(或它們所在的直線)于M、N

1)如圖1,當(dāng)線段EF經(jīng)過△ABC的頂點(diǎn)時(shí),點(diǎn)N與點(diǎn)C重合,線段DEACM,已知AC=BC=5,則MC=   

2)如果2,當(dāng)線段EF與線段BC邊交于N點(diǎn),線段DE與線段AC交于M點(diǎn),連MNEC,請?zhí)骄?/span>AM,MN,CN之間的等量關(guān)系,并說明理由;

3)如圖3,當(dāng)線段EFBC延長線交于N點(diǎn),線段DE與線段AC交于M點(diǎn),連MN,EC,則(2)中AM,MN,CN之間的等量關(guān)系還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)字的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書中,用如圖的三角形解釋二項(xiàng)和(a+bn的展開式的各項(xiàng)系數(shù),此三角形稱為楊輝三角,根據(jù)楊輝三角請計(jì)算(a+b20的展開式中第三項(xiàng)的系數(shù)為(

A.2019B.2018C.191D.190

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣1,0),P2(﹣1,﹣1),P31,﹣1),P411),P5(﹣21),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),線段AB的兩個(gè)端點(diǎn)A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點(diǎn)C為線段AB的中點(diǎn),現(xiàn)將線段BA繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)D.
(1)如圖1,若該拋物線經(jīng)過原點(diǎn)O,且a=﹣
①求點(diǎn)D的坐標(biāo)及該拋物線的解析式;
②連結(jié)CD,問:在拋物線上是否存在點(diǎn)P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點(diǎn)P的坐標(biāo),若不存在,請說明理由;

(2)如圖2,若該拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)E(1,1),點(diǎn)Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點(diǎn)的個(gè)數(shù)是3個(gè),請直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

;②;③;

根據(jù)上述式子的規(guī)律,解答下列問題:

(1)第④個(gè)等式為 ;

(2)寫出第個(gè)等式,并驗(yàn)證其正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A60°,點(diǎn)E、F分別為AD、DC上的動(dòng)點(diǎn),∠EBF=60°,點(diǎn)E從點(diǎn)A向點(diǎn)D運(yùn)動(dòng)的過程中,AECF的長度(

A. 逐漸增加 B. 逐漸減小

C. 保持不變且與EF的長度相等 D. 保持不變且與AB的長度相等

查看答案和解析>>

同步練習(xí)冊答案