(2012•龍巖)下列函數(shù)中,當x<0時,函數(shù)值y隨x的增大而增大的有( 。
①y=x   ②y=-2x+1  ③y=-
1
x
  ④y=3x2
分析:根據(jù)正比例函數(shù)、一次函數(shù)、反比例函數(shù)、二次函數(shù)的增減性,結合自變量的取值范圍,逐一判斷.
解答:解:①y=x,正比例函數(shù),k=1>0,y隨著x增大而增大,正確;
②y=-2x+1,一次函數(shù),k=-2<0,y隨x的增大而減小,錯誤;
③y=-
1
x
,反比例函數(shù),k=-1<0,當x<0時,函數(shù)值y隨x的增大而增大,正確;
④y=3x2,二次函數(shù),a=3>0,開口向上,對稱軸為x=0,故當x<0時,圖象在對稱軸左側,y隨著x的增大而減小,錯誤.
故選B.
點評:本題綜合考查了二次函數(shù)、一次函數(shù)、反比例函數(shù)、正比例函數(shù)的增減性(單調性),是一道難度中等的題目.掌握函數(shù)的性質解答此題是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•龍巖模擬)由于電力緊張,某地決定對工廠實行“峰谷”用電.規(guī)定:在每天的8:00至22:00為“峰電”期,電價為a元/度;每天22:00至次日8:00為“谷電”期,電價為b元/度.下表為某廠4、5月份的用電量和電費的情況統(tǒng)計表:
月份 用電量(萬度) 電費(萬元)
4 12 6.4
5 16 8.8
(1)若4月份“谷電”的用電量占當月總電量的
1
3
,5月份“峰電”的用電量占當月總用電量的
3
4
,求a、b的值;
(2)若6月份該廠預計用電20萬度,為將電費控制在10萬元至10.6萬元之間(不含10萬元和10.6萬元),那么該廠6月份在“谷電”的用電量占當月用電量的比例應在什么范圍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•龍巖)矩形ABCD中,AD=5,AB=3,將矩形ABCD沿某直線折疊,使點A的對應點A′落在線段BC上,再打開得到折痕EF.
(1)當A′與B重合時,(如圖1),EF=
5
5
;當折痕EF過點D時(如圖2),求線段EF的長;
(2)觀察圖3和圖4,設BA′=x,①當x的取值范圍是
3≤x≤5
3≤x≤5
時,四邊形AEA′F是菱形;②在①的條件下,利用圖4證明四邊形AEA′F是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•龍巖)在平面直角坐標系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點C在y軸正半軸上,已知點A(-1,0).

(1)請直接寫出點B、C的坐標:B
(3,0)
(3,0)
、C
(0,
3
(0,
3
;并求經(jīng)過A、B、C三點的拋物線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段AB上(點E是不與A、B兩點重合的動點),并使ED所在直線經(jīng)過點C.此時,EF所在直線與(1)中的拋物線交于點M.
①設AE=x,當x為何值時,△OCE∽△OBC;
②在①的條件下探究:拋物線的對稱軸上是否存在點P使△PEM是等腰三角形?若存在,請寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案