【題目】如圖,正方形和的邊,在同一條直線上,且,取的中點(diǎn),連接,,.
(1)試證明,并求的值.
(2)如圖,將如圖中的正方形變?yōu)榱庑,設(shè),其它條件不變,問(wèn)(1)中的值有變化嗎?若有變化,求出該值(用含的式子表示);若無(wú)變化,說(shuō)明理由.
【答案】(1)見(jiàn)解析;;(2)(1)中的值有變化.理由見(jiàn)解析;.
【解析】
(1)根據(jù)全等三角形的判定(AAS)和勾股定理即可得到答案;
(2)根據(jù)平行線的性質(zhì)和三角函數(shù),即可得到答案.
(1)證明:如圖1中,延長(zhǎng)交的延長(zhǎng)線于.
∵四邊形,四邊形都是正方形,
∴,
∴,
∵,,
∴,
∴,,
∵,,
∴,
∵,,
∴,,
連接,,設(shè),則,,,
∵,
∴,
∴,
∵,
∴,
∵,,
∴,
∴.
(2)解:(1)中的值有變化.
理由:如圖2中,連接,交于點(diǎn),連接,,,交于.
∵,,
∴,,
∵,
∴,,共線,
∵,
∴,
∵,,
∴,
∴與互相平分,
∵,
∴點(diǎn)在直線上,
∵,
∴四邊形是矩形,
∴,
∵,,
∴,設(shè),則,
易知,,,
∵,,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:我們學(xué)習(xí)等邊三角形時(shí)得到直角三角形的一個(gè)性質(zhì):在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.即:如圖1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,則:AC=AB.
探究結(jié)論:小明同學(xué)對(duì)以上結(jié)論作了進(jìn)一步研究.
(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BE與CE之間的數(shù)量關(guān)系為 .
(2)如圖2,點(diǎn)D是邊CB上任意一點(diǎn),連接AD,作等邊△ADE,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.試探究線段BE與DE之間的數(shù)量關(guān)系,寫(xiě)出你的猜想并加以證明.
(3)當(dāng)點(diǎn)D為邊CB延長(zhǎng)線上任意一點(diǎn)時(shí),在(2)條件的基礎(chǔ)上,線段BE與DE之間存在怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論 .
拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等邊△ABC,當(dāng)C點(diǎn)在第一象限內(nèi),且B(2,0)時(shí),求C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某品牌太陽(yáng)能熱水器的側(cè)面示意圖.已知鐵架水平橫管平行于水平線AD,長(zhǎng)為的真空管與水平線的夾角為37°,鐵架的傾斜角為22°,鐵架豎直管的長(zhǎng)度為05 ,根據(jù)以上信息,請(qǐng)求出:
(1))真空管上端到水平線的距離;
(2)水平橫管的長(zhǎng)度(結(jié)果精確到0.1 )(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣2x+c(c為常數(shù))的對(duì)稱軸如圖所示,且拋物線過(guò)點(diǎn)C(0,c).
(1)當(dāng)c=﹣3時(shí),點(diǎn)(x1,y1)在拋物線y=x2﹣2x+c上,求y1的最小值;
(2)若拋物線與x軸有兩個(gè)交點(diǎn),自左向右分別為點(diǎn)A、B,且OA=OB,求拋物線的解析式;
(3)當(dāng)﹣1<x<0時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤(rùn)為40元(市場(chǎng)管理部門(mén)規(guī)定,該種玩具每件利潤(rùn)不能超過(guò)60元),每天可售出50件.根據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會(huì)減少1件.設(shè)銷售單價(jià)增加元,每天售出件.
(1)請(qǐng)寫(xiě)出與之間的函數(shù)表達(dá)式;
(2)當(dāng)為多少時(shí),超市每天銷售這種玩具可獲利潤(rùn)2250元?
(3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時(shí)最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)方法選擇
如圖①,四邊形是的內(nèi)接四邊形,連接,,.求證:.
小穎認(rèn)為可用截長(zhǎng)法證明:在上截取,連接…
小軍認(rèn)為可用補(bǔ)短法證明:延長(zhǎng)至點(diǎn),使得…
請(qǐng)你選擇一種方法證明.
(2)類比探究
(探究1)
如圖②,四邊形是的內(nèi)接四邊形,連接,,是的直徑,.試用等式表示線段,,之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(探究2)
如圖③,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.
(3)拓展猜想
如圖④,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽.為了解本次大賽的成績(jī),校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
頻數(shù)頻率分布表
成績(jī)x(分) | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根據(jù)所給信息,解答下列問(wèn)題:
(1)m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在 分?jǐn)?shù)段;
(4)若成績(jī)?cè)?/span>90分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的3000名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊三角形ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長(zhǎng)是9.其中,正確結(jié)論的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了開(kāi)展“陽(yáng)光體育運(yùn)動(dòng)”,計(jì)劃購(gòu)買(mǎi)籃球、足球共60個(gè),已知每個(gè)籃球的價(jià)格為70元,每個(gè)足球的價(jià)格為80元.
(1)若購(gòu)買(mǎi)這兩類球的總金額為4600元,求籃球、足球各買(mǎi)了多少個(gè)?
(2)若購(gòu)買(mǎi)籃球的總金額不超過(guò)購(gòu)買(mǎi)足球的總金額,求最多可購(gòu)買(mǎi)多少個(gè)籃球?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com