【題目】某市新建了圓形文化廣場,小杰和小浩準備不同的方法測量該廣場的半徑.

1)小杰先找圓心,再量半徑,請你在圖1中,用尺規(guī)作圖的方法幫小杰找到該廣場的圓心(不寫作法,保留作圖痕跡);

2)小浩在廣場邊(如圖2)選取、、三根石柱,量得之間的距離與、之間的距離相等,并測得長為240米,的距離為5米.請你幫他求出廣場的半徑;

3)請你解決下面的問題:如圖3,的直徑為,弦是弦上的一個動點,求出的長度范圍是多少?

【答案】(1)詳見解析;(2)廣場的半徑1443米;(3.

【解析】

1)作出弦的垂直平分線,再結(jié)合垂徑定理推論得出圓心位置;

2)設圓心為O,連結(jié) OA、OB,OABCD,根據(jù)A、B之間的距離與A、C之間的距離相等,得出,從而得出BD=DC=BC,再根據(jù)勾股定理得出OB2=OD2+BD2,設OB=x,即可求出廣場的半徑;

3)過點OOEAB于點E,連接OB,由垂徑定理可知AE=BE=AB,再根據(jù)勾股定理求出OE的長,由此可得出結(jié)論.

解:如圖1所示,在圓中作任意2條弦的垂直平分線,由垂徑定理可知這2條垂直平分線必定與圓的2條直徑重合,所以交點即為所求;

2)如圖2,連結(jié)、,

,

,

(米),

由題意

中,,

,則,

解得:,

,

∴廣場的半徑1443米.

3)如圖3,過點于點,連接,

,

,

的直徑為

,

∵垂線段最短,半徑最長,

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】表中所列 的7對值是二次函數(shù) 圖象上的點所對應的坐標,其中

x

y

7

m

14

k

14

m

7

根據(jù)表中提供的信息,有以下4 個判斷:

;② ;③ 當時,y 的值是 k;④ 其中判斷正確的是 ( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8AD=6,點EAB上一點,AE=2,點FAD上,將AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上時,折痕EF的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象經(jīng)過點(﹣1,4),且與直線相交于AB兩點(如圖),A點在y軸上,過點BBC⊥x軸,垂足為點C(﹣3,0).

1)求二次函數(shù)的表達式;

2)點N是二次函數(shù)圖象上一點(點NAB上方),過NNP⊥x軸,垂足為點P,交AB于點M,求MN的最大值;

3)在(2)的條件下,點N在何位置時,BMNC相互垂直平分?并求出所有滿足條件的N點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AC6cm,BC8cm,點P從點A出發(fā)沿AC1cm/s的速度向點C移動,同時點QC點出發(fā)沿CB2cm/s的速度向點B移動.當Q運動到B點時,P,Q停止運動,設點P運動的時間為ts

1t為何值時,△PCQ的面積等于5cm2?

2)點P、Q在移動過程中,是否存在某一時刻,使得△PCQ的面積等于△ABC的面積的一半?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個口袋里裝著白、紅、黑三種顏色的小球(除顏色外形狀大小完全相同),其中白球3個、紅球2個、黑球1個.

(1)隨機從袋中取出一個球,求取出的球是黑球的概率;

(2)若取出的第一只球是紅球,不將它放回袋里,從袋中余下的球中再隨機地取出1個,這時取出的球是黑球的概率是多少?

(3)若取出一個球,將它放回袋中,從袋中再隨機地取出一個球,兩次取出的球都是白球的概率是多少?(用列表法或樹狀圖計算)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于兩點(的左側(cè)),與軸交于點, 與點關(guān)于拋物線的對稱軸對稱.

(1)求拋物線的解析式及點的坐標:

(2)是拋物線對稱軸上的一動點,當的周長最小時,求出點的坐標;

(3)軸上,且,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線ACBD相交于點O,在DC的延長線上取一點E,連接OEBC于點F.已知AB=4,BC=6,CE=2,則CF的長等于(

A. 1 B. 1.5 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,AB=AC,點E、F分別為邊AB、BC上的點,且AE=BF,連接CE、AF交于點H,則下列結(jié)論:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;AEAD=AHAF;其中結(jié)論正確的個數(shù)是

A.1個 B2個 C3個 D4個

查看答案和解析>>

同步練習冊答案