【題目】如圖1,在△ABC中,AB=AC,點D是BC的中點,點E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長線交AC于點F,且BF⊥AC,∠BAC=45°,原題設其他條件不變.求證:AB=BF+EF.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據等腰三角形三線合一的性質可得AD垂直平分BC,再根據線段垂直平分線上的點到線段兩端點的距離相等可得BE=CE;
(2)判斷出△ABF是等腰直角三角形,再根據等腰直角三角形的性質可得AF=BF,根據同角的余角相等求出∠EAF=∠CBF,然后利用“角角邊”證明△AEF和△BCF全等,根據全等三角形對應邊相等證明即可.
(1)∵AB=AC,點D是BC的中點,∴AD垂直平分BC,∴BE=CE;
(2)∵BF⊥AC,∠BAC=45°,∴△ABF是等腰直角三角形,∴AF=BF.
∵AB=AC,點D是BC的中點,∴AD⊥BC,∴∠EAF+∠C=90°.
∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF.
在△AEF和△BCF中,∵,∴△AEF≌△BCF(ASA),∴EF=FC.
∵AC=AF+FC,AB=AC,∴AB=AF+FC=BF+EF.
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b分別交y軸、x軸于C、D兩點,與反比例函數y=(x>0)的圖象交于A(m,8),B(4,n)兩點.
(1)求一次函數的解析式;
(2)根據圖象直接寫出kx+b﹣<0的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG⊥CE于G,且CD=AE.
(1)求證:CG=EG.
(2)求證:∠B=2∠ECB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】樂樂根據學習函數的經驗,對函數y=|x-1|的圖象與性質進行了研究,下面是樂樂的研究過程,請補充完成:
(1)函數y=|x-1|的自變量x的取值范圍是 .
(2)列表,找出y與x的幾組對應值.
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | b | 1 | 0 | 1 | 2 | … |
(3)在平面直角坐標系xOy中,描出以上表中各對對應值為坐標的點,并畫出該函數的圖象.
(4)①函數的最小值為 ;
②寫出一條該函數的其它性質: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C,E,F,B在一條直線上,點A,D在BC異側,AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=50°,求∠D的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3,點O為對角線BD的中點,點P從點A出發(fā),沿折線AD﹣DO﹣OC以每秒1個單位長度的速度向終點C運動,當點P與點A不重合時,過點P作PQ⊥AB于點Q,以PQ為邊向右作正方形PQMN,設正方形PQMN與△ABD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).
(1)求點N落在BD上時t的值;
(2)直接寫出點O在正方形PQMN內部時t的取值范圍;
(3)當點P在折線AD﹣DO上運動時,求S與t之間的函數關系式;
(4)直接寫出直線DN平分△BCD面積時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,D為斜邊AB的中點,∠B=60°,BC=2cm,動點E從點A出發(fā)沿AB向點B運動,動點F從點D出發(fā),沿折線D﹣C﹣B運動,兩點的速度均為1cm/s,到達終點均停止運動,設AE的長為x,△AEF的面積為y,則y與x的圖象大致為( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點F,作CM⊥AD,垂足為M,下列結論不正確的是( 。
A. AD=CE B. MF=CF C. ∠BEC=∠CDA D. AM=CM
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣1,0),點C(0,2)
(1)求拋物線的函數解析式;
(2)若D是拋物線位于第一象限上的動點,求△BCD面積的最大值及此時點D的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com