【題目】為了解社區(qū)居民最喜歡的支付方式,某興趣小組對龍湖社區(qū)內(nèi)20~60歲年齡段的部分居民展開了隨機(jī)問卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息解答下列問題:

1)求參與問卷調(diào)查的總?cè)藬?shù).

2)補(bǔ)全條形統(tǒng)計(jì)圖.

3)該社區(qū)中20~60歲的居民約4000人,估算這些人中最喜歡微信支付方式的人數(shù).

【答案】1500人;(2)見解析;(31400.

【解析】

1)由B組的人數(shù)和所占的百分比可以求出,
2)求出C組中41-60歲的人數(shù)即可補(bǔ)全條形統(tǒng)計(jì)圖,
3)用樣本估計(jì)總體,通過計(jì)算樣本中喜歡用微信支付所占的百分比,去估計(jì)總體中喜歡用微信支付的占的百分比.

1(人)

答:參與問卷調(diào)查的總?cè)藬?shù)是500人;

2C組現(xiàn)金支付的41-60歲的人數(shù)為:
500-120-80-100-75-15-20-30=60人,
補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示:

3(人)

答:這些人中最喜歡微信支付方式的人數(shù)約為1400人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校組織名同學(xué)和名教師參加校外學(xué)習(xí)交流活動現(xiàn)打算選租大、小兩種客車,大客車載客量為/輛,小客車載客量為/

1)學(xué)校準(zhǔn)備租用輛客車,有幾種租車方案?

2)在(1)的條件下,若大客車租金為/輛,小客車租金為/輛,哪種租車方案最省錢?

3)學(xué)校臨時增加名學(xué)生和名教師參加活動,每輛大客車有2名教師帶隊(duì),每輛小客車至少有名教師帶隊(duì).同學(xué)先坐滿大客車,再依次坐滿小客車,最后一輛小客車至少要有人,請你幫助設(shè)計(jì)租車方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEABEDFACF,若BDCDBECF

1)求證:AD平分∠BAC

2)寫出AB+ACAE之間的等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,點(diǎn)EBC邊的中點(diǎn),點(diǎn)P為對角線AC上一動點(diǎn),則PB+PE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:兩個等腰直角三角形()邊長分別為ab)如圖放置在一起,連接AD,

1)求陰影部分()的面積

2)如果有一個點(diǎn)正好位于線段的中點(diǎn),連接.得到,的面積

3)(2)中的三角形比(1)中的面積大還是小,大(。┒嗌伲

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在正方形中,點(diǎn)分別在上,△是等邊三角形,連接,給出下列結(jié)論:

; ;

垂直平分;

其中結(jié)論正確的共有( ).

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2bxca≠0)的圖象經(jīng)過點(diǎn)(-20),(x0,0),1x02,y軸的負(fù)半軸相交,且交點(diǎn)在(0,-2)的上方,下列結(jié)論

b0;②2ab;③2ab10④2ac0.其中正確結(jié)論是 _________填正確序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ADBC,ABBC,CDDECD=ED,AD=6BC=9,則ADE的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究函數(shù)的圖象與性質(zhì),下面是探究過程,請補(bǔ)充完整:

)下表是的幾組對應(yīng)值.

函數(shù)的自變量的取值范圍是__________, 的值為__________.

)描出以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),并畫出該函數(shù)的大致圖象

)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):

函數(shù)圖象與軸有__________個交點(diǎn),所以對應(yīng)方程有__________個實(shí)數(shù)根.

方程有__________個實(shí)數(shù)根.

結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì)__________.

查看答案和解析>>

同步練習(xí)冊答案