【題目】如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE∥BD,過點D作ED∥AC,兩線相交于點E.
(1)求證:四邊形AODE是菱形;
(2)連接BE,交AC于點F.若BE⊥ED于點E,求∠AOD的度數.
【答案】
(1)證明:∵AE∥BD,ED∥AC,
∴四邊形AODE是平行四邊形,
∵四邊形ABCD是矩形,
∴OA=OC= AC,OB=OD= BD,AC=BD,
∴OA=OC=OD,
∴四邊形AODE是菱形
(2)解:連接OE,如圖所示:
由(1)得:四邊形AODE是菱形,
∴AE=OB=OA,
∵AE∥BD,
∴四邊形AEOB是平行四邊形,
∵BE⊥ED,ED∥AC,
∴BE⊥AC,
∴四邊形AEOB是菱形,
∴AE=AB=OB,
∴AB=OB=OA,
∴△AOB是等邊三角形,
∴∠AOB=60°,
∴∠AOD=180°﹣60°=120°.
【解析】(1)先證明四邊形AODE是平行四邊形,再由矩形的性質得出OA=OC=OD,即可得出四邊形AODE是菱形;(2)連接OE,由菱形的性質得出AE=OB=OA,證明四邊形AEOB是菱形,得出AB=OB=OA,證出△AOB是等邊三角形,得出∠AOB=60°,再由平角的定義即可得出結果
科目:初中數學 來源: 題型:
【題目】某市公交公司為應對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,
(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?
(2)若該公司預計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E是ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=10,EF=6,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①、②、③、④四個圖形都是平面圖形,觀察圖②和表中對應數值,探究計數的方法并解答下面的問題.
(1)數一數每個圖各有多少頂點、多少條邊、這些邊圍成多少區(qū)域,將結果填入下表:
圖形 | ① | ② | ③ | ④ |
頂點數(V) | ||||
邊數(E) | ||||
區(qū)域數(F) |
(2)根據表中的數值,寫出平面圖的頂點數、邊數、區(qū)域數之間的關系;
(3)如果一個平面圖形有20個頂點和11個區(qū)域,求這個平面圖形的邊數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.
(1)填空:與∠AOE互補的角是 ;
(2)若∠AOD=36°,求∠DOE的度數;
(3)當∠AOD=x°時,請直接寫出∠DOE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB//DE,AC//DF,AC=DF,下列條件中不能判斷△ABC≌△DEF的是( )
A. AB=DE B. EF=BC C. ∠B=∠E D. EF∥BC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖某商場為了吸引顧客,設立了一個可以自由轉動的轉盤,并規(guī)定:每購買500元商品,就能獲得一次轉動轉盤的機會,如果轉盤停止后,指針上對準500、20、100、50、10的區(qū)域,顧客就可以分別獲得500元、200元、100元、50元、10元的購物券一張。(轉盤等分成20份)
(1)小華購物450元,他獲得購物券的概率是多少?
(2)小麗購物600元,那么她獲得100元以上(包括100元)券的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,現有一張邊長為4的正方形紙片,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結論;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點D,那么∠DAC的度數為( 。
A. 90° B. 80° C. 70° D. 60°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com