已知拋物線y=ax2+bx+c與直線y=mx+n相交于兩點(diǎn),這兩點(diǎn)的坐標(biāo)分別是(0,)和(m-b,m2-mb+n),其中a,b,c,m,n為實(shí)數(shù),且a,m不為0.
(1)求c的值;
(2)設(shè)拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)是(x1,0)和(x2,0),求x1x2的值;
(3)當(dāng)-1≤x≤1時(shí),設(shè)拋物線y=ax2+bx+c上與x軸距離最大的點(diǎn)為P(xo,yo ),求這時(shí)|yo|的最小值.
解:
(1)∵(0,)在y=ax2+bx+c上,∴ =a×02+b×0+c, ∴ c=.(1分)
(2)又可得 n=.
∵ 點(diǎn)(m-b,m2-mb+n)在y=ax2+bx+c上,
∴ m2-mb=a(m-b)2+b(m-b),
∴(a-1)(m-b)2=0, (2分)
若(m-b)=0,則(m-b, m2-mb+n)與(0,)重合,與題意不合.
∴ a=1.(3分,只要求出a=1,即評(píng)3分)
∴拋物線y=ax2+bx+c,就是y=x2+bx.
△=b2-4ac=b2-4×()>0,(沒寫出不扣分)
∴拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)就是關(guān)于x的二次方程0=ax2+bx+c的兩個(gè)實(shí)數(shù)根,∴由根與系數(shù)的關(guān)系,得x1x2=. (4分)
(3)拋物線y=x2+bx的對(duì)稱軸為x=,最小值為. (沒寫出不扣分)
設(shè)拋物線y=x2+bx在x軸上方與x軸距離最大的點(diǎn)的縱坐標(biāo)為H,在x軸下方與x軸距離最大的點(diǎn)的縱坐標(biāo)為h.
①當(dāng)<-1,即b>2時(shí),在x軸上方與x軸距離最大的點(diǎn)是(1,yo),
∴|H|=y(tǒng)o=+b>, (5分)
在x軸下方與x軸距離最大的點(diǎn)是(-1,yo),
∴|h|=|yo|=|-b|=b->, (6分)
∴|H|>|h|.∴這時(shí)|yo|的最小值大于. (7分)
② 當(dāng)-1≤≤0,即0≤b≤2時(shí),
在x軸上方與x軸距離最大的點(diǎn)是(1,yo),
∴|H|=y(tǒng)o=+b≥,當(dāng)b=0時(shí)等號(hào)成立.
在x軸下方與x軸距離最大點(diǎn)的是 (,),
∴|h|=||=≥,當(dāng)b=0時(shí)等號(hào)成立.
∴這時(shí)|yo|的最小值等于. (8分)
③ 當(dāng)0<≤1,即-2≤b<0時(shí),
在x軸上方與x軸距離最大的點(diǎn)是(-1,yo),
∴|H|=y(tǒng)o=|1+(-1)b|=|-b|=-b>
在x軸下方與x軸距離最大的點(diǎn)是 (,),
∴|h|=|yo|=||=>.
∴ 這 時(shí) |yo|的 最 小 值 大 于 . (9分)
④ 當(dāng)1<,即b<-2時(shí),
在x軸上方與x軸距離最大的點(diǎn)是(-1,yo),∴|H|=-b>,
在x軸下方與x軸距離最大的點(diǎn)是(1,yo),∴|h|=|+b|=-(b+)>,
∴|H|>|h|,∴這時(shí)|yo|的最小值大于. (10分)
綜上所述,當(dāng)b=0,x0=0時(shí),這時(shí)|yo|取最小值,為|yo|=. (11分)
解析:略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線y=ax2+bx+c(a>0)經(jīng)過點(diǎn)B(12,0)和C(0,-6),對(duì)稱軸為x=2.
(1)求該拋物線的解析式.
(2)點(diǎn)D在線段AB上且AD=AC,若動(dòng)點(diǎn)P從A出發(fā)沿線段AB以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從C出發(fā)沿線段CB勻速運(yùn)動(dòng),問是否存在某一時(shí)刻,使線段PQ被直線CD垂直平分?若存在,請(qǐng)求出此時(shí)的時(shí)間t(秒)和點(diǎn)Q的運(yùn)動(dòng)速度;若存在,請(qǐng)說明理由.
(3)在(2)的結(jié)論下,直線x=1上是否存在點(diǎn)M,使△MPQ為等腰三角形?若存在,請(qǐng)求出所有點(diǎn)M的坐
標(biāo);若存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆山東鄒城北宿中學(xué)九年級(jí)3月月考數(shù)學(xué)試卷(帶解析) 題型:解答題
已知拋物線y=ax2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線的解析式;
(2)若點(diǎn)D(m,m+1)在第一象限的拋物線上, 求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)的坐標(biāo);
(3)在(2)的條件下,連結(jié)BD,若點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011年浙江省嵊州市九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分14分)
如圖,已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3)。設(shè)拋物線的頂點(diǎn)為D,求解下列問題:
1.(1)求拋物線的解析式和D點(diǎn)的坐標(biāo);
2.(2)過點(diǎn)D作DF∥軸,交直線BC于點(diǎn)F,求線段DF的長,并求△BCD的面積;
3.(3)能否在拋物線上找到一點(diǎn)Q,使△BDQ為直角三角形?若能找到,試寫出Q點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com