【題目】如圖,題型ABCD中,ADBCAD=CD=AD=2,B=60°AHBC于點H,且AH=,直線MN是梯形的對稱軸,P為直線MN上的一動點,則PCPD的最小值為______.

【答案】

【解析】試題解析:連接AC交直線MNP點,P點即為所求.


∵直線MN為梯形ABCD的對稱軸,
AP=DP
∴當A、PC三點位于一條直線時,PC+PD=AC,為最小值,
AD=DC=AB,ADBC,
∴∠DCB=B=60°,
ADBC
∴∠ACB=DAC,
AD=CD
∴∠DAC=DCA,
∴∠DAC=DCA=ACB
∵∠ACB+DCA=60°,
∴∠DAC=DCA=ACB=30°,
∴∠BAC=90°,
AB=2,B=60°
AC=tan60°×AB=×2=2
PC+PD的最小值為2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】ab1,ab=3,則(a-1)(b+1)____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有人在岸上點C的地方,用繩子拉船靠岸開始時,繩長CB=5米,拉動繩子將船身向岸邊行駛了2米到點D后,繩長CD=米,求岸上點C離水面的高度CA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】81的平方根為(

A.9B.±9C.9D.±8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O中,弦AB=AC,點P是∠BAC所對弧上一動點,連接PA,PB.

(1)如圖①,把△ABP繞點A逆時針旋轉(zhuǎn)到△ACQ,連接PC,求證:∠ACP+∠ACQ=180°;

(2)如圖②,若∠BAC=60°,試探究PA、PB、PC之間的關系.

(3)若∠BAC=120°時,(2)中的結(jié)論是否成立?若是,請證明;若不是,請直接寫出它們之間的數(shù)量關系,不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的方程x2+bx+1=0有兩個不相等的實數(shù)根,則a的值可以是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線ABx軸于點A4 0),交y軸于點B0 4),

1如圖,若C的坐標為(-1, ,0),且AHBC于點H,AHOB于點P,試求點P的坐標;

2在(1)的條件下,如圖2,連接OH,求證:∠OHP=45°

3如圖3,若點DAB的中點,點My軸正半軸上一動點,連結(jié)MD,過點DDNDMx軸于N點,當M點在y軸正半軸上運動的過程中,式子的值是否發(fā)生改變?如發(fā)生改變,求出該式子的值的變化范圍;若不改變,求該式子的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寫出一個一元一次方程,使得它的解為2,你寫出的方程是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】快車和慢車同時從甲地出發(fā),以各自的速度勻速向乙地行駛,快車到達乙地后停留了45分鐘,立即按原路以另一速度勻速返回,直至與慢車相遇.已知慢車的速度為60千米/時,兩車之間的距離y(千米)與貨車行駛時間x(小時)之間的函數(shù)圖象如圖所示,則快車從乙地返回時的速度為__________千米/時

查看答案和解析>>

同步練習冊答案