6、若平行四邊形的兩條對角線長為6 cm和16 cm,則下列長度的線段可作為平行四邊形邊長的是(  )
分析:平行四邊形的兩條對角線互相平分,根據(jù)三角形形成的條件:任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,進行判斷.
解答:解:由題意可知,平行四邊形邊長的取值范圍是:8-3<邊長<8+3,即5<邊長<11.
只有選項B在此范圍內(nèi),故選B.
點評:本題主要考查了平行四邊形對角線互相平分這一性質(zhì),此類求三角形第三邊的范圍的題目,解題的關鍵是根據(jù)三角形三邊關系定理列出不等式,再求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

有4個命題:
(1)一組對邊相等,一組對角相等的四邊形是平行四邊形;
(2)一組對邊平行,一組對角相等的四邊形是平行四邊形;
(3)O是四邊形ABCD內(nèi)一點,若AO=BO=CO=DO,則四邊形ABCD是矩形;
(4)若四邊形的兩條對角線互相垂直,則這個四邊形是菱形.
其中正確的命題個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.如:平行四邊形的一條對線所在的直線就是平行四邊形的一條面積等分線.

(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;

(2)如圖1,梯形ABCD中,AB∥DC,如果延長DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請你給出這個結(jié)論成立的理由,并過點A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);

(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點A能否作出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出證明;若不能,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.如:平行四邊形的一條對線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;
(2)如圖1,梯形ABCD中,AB∥DC,如果延長DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請你給出這個結(jié)論成立的理由,并過點A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點A能否作出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出證明;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(江蘇連云港) 題型:解答題

如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.如:平行四邊形的一條對線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;
(2)如圖1,梯形ABCD中,AB∥DC,如果延長DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請你給出這個結(jié)論成立的理由,并過點A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點A能否作出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出證明;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生考試數(shù)學卷(江蘇無錫) 題型:解答題

如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.如:平行四邊形的一條對線所在的直線就是平行四邊形的一條面積等分線.

(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;

(2)如圖1,梯形ABCD中,AB∥DC,如果延長DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請你給出這個結(jié)論成立的理由,并過點A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);

(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點A能否作出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出證明;若不能,說明理由.

 

查看答案和解析>>

同步練習冊答案