【題目】如圖,AD∥BC,連接BD,點(diǎn)E在BC上,點(diǎn)F在DC上,連接EF,且∠1=∠2.
(1)求證:EF∥BD;
(2)若BD平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度數(shù).
【答案】(1)證明見(jiàn)解析;(2)∠CFE=85°.
【解析】
(1)由AD∥BC知∠1=∠3,結(jié)合∠1=∠2得∠3=∠2,據(jù)此即可得證;
(2)由AD∥BC、∠A=130°知∠ABC=50°,再根據(jù)平分線定義及BD∥EF知∠3=∠2=25°,由三角形的內(nèi)角和定理可得答案.
解:(1)如圖,
∵AD∥BC(已知),
∴∠1=∠3(兩直線平行,內(nèi)錯(cuò)角相等).
∵∠1=∠2,
∴∠3=∠2(等量代換).
∴EF∥BD(同位角相等,兩直線平行).
(2)解:∵AD∥BC(已知),
∴∠ABC+∠A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
∵∠A=130°(已知),
∴∠ABC=50°.
∵BD平分∠ABC(已知),
,
∴∠2=∠3=25°.
∵在△CFE中,∠CFE+∠2+∠C=180°(三角形內(nèi)角和定理),∠C=70°,
∴∠CFE=85°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD邊長(zhǎng)為3,連接AC,AE平分∠CAD,交BC的延長(zhǎng)線于點(diǎn)E,FA⊥AE,交CB延長(zhǎng)線于點(diǎn)F,則EF的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一種廣場(chǎng)三聯(lián)漫步機(jī),其側(cè)面示意圖如圖2所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求點(diǎn)D到地面的高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列條件不能判定四邊形ABCD是矩形的是( 。
A.∠DAB=∠ABC=∠BCD=90°B.AB∥CD,AB=CD,AB⊥AD
C.AO=BO,CO=DOD.AO=BO=CO=DO
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD在平面直角坐標(biāo)系中,點(diǎn)A(1,8),B(1,6),C(7,6).
(1)請(qǐng)直接寫(xiě)出D點(diǎn)的坐標(biāo).
(2)連接OB,OD,BD,請(qǐng)求出三角形OBD的面積.
(3)若長(zhǎng)方形ABCD以每秒1個(gè)單位長(zhǎng)度的速度向下運(yùn)動(dòng),當(dāng)邊BC與x軸重合時(shí),停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,t為多少時(shí),三角形OBD的面積等于長(zhǎng)方形ABCD的面積的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小正方形的邊長(zhǎng)都是1,三角形ABC三個(gè)頂點(diǎn)與方格紙中小正方形的頂點(diǎn)重合,請(qǐng)?jiān)诜礁窦堉蟹謩e畫(huà)出符合要求的圖形,具體要求如下:
(1)在圖①中平移三角形ABC,點(diǎn)A移動(dòng)到點(diǎn)P,畫(huà)出平移后的三角形PMN;
(2)在圖②中將三角形ABC三個(gè)頂點(diǎn)的橫、縱坐標(biāo)都減去2,畫(huà)出得到的三角形A1B1C1;
(3)在圖③中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,且A點(diǎn)的坐標(biāo)為(0,2),C點(diǎn)的坐標(biāo)為(1,5).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)計(jì)劃把1240噸甲種貨物和880噸乙種貨物用一列火車(chē)運(yùn)往某地,已知這列火車(chē)掛有A、B兩種不同規(guī)格的貨車(chē)車(chē)廂共40節(jié),使用A型車(chē)廂每節(jié)費(fèi)用為6000元,B型車(chē)廂每節(jié)費(fèi)用8000元.如果每節(jié)A型車(chē)廂最多可裝35噸甲種貨物和15噸乙種貨物,每節(jié)B型車(chē)廂最多可裝25噸甲種貨物和35噸乙種貨物;
(1)那么共有哪幾種安排車(chē)廂的方案?
(2)在上述方案中,哪種方案運(yùn)費(fèi)最省、最少運(yùn)費(fèi)為多少元?
(3)在(1)問(wèn)下,若兩種貨物全部售出,且每噸貨物售出獲利200元,除去運(yùn)費(fèi)獲
利154000元,問(wèn):在這種情況下是按哪種方案安排車(chē)廂的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)、兩種新型節(jié)能臺(tái)燈共盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如表所示:
()若商場(chǎng)預(yù)計(jì)進(jìn)貨款為元,則這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?
()若商場(chǎng)規(guī)定型臺(tái)燈的進(jìn)貨數(shù)量不超過(guò)型臺(tái)燈數(shù)量的倍,應(yīng)怎樣進(jìn)貨才能使商場(chǎng)在銷售完這批臺(tái)燈時(shí)獲利最多?此時(shí)利潤(rùn)為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com