【題目】已知點C為直徑BA的延長線上一點,CD切⊙O于點D,

(Ⅰ)如圖①,若∠CDA=26°,求∠DAB的度數(shù);

(Ⅱ)如圖②,過點B作⊙O的切線交CD的延長線于點E,若⊙O的半徑為3BC=10,求BE的長.

【答案】(I)DAB =64°;(II) BE的長是

【解析】

I)根據(jù)切線的性質得出∠ODC=90°,求出∠ODA,根據(jù)等腰三角形的性質求出即可;
II)根據(jù)切線長定理得出BE=DE,根據(jù)勾股定理求出DC,根據(jù)勾股定理得出方程,求出方程的解即可.

(I)如圖①,連接OD

CD切⊙O于點D,

∴∠ODC=90°,

∴∠CDA+ODA=90°,

∵∠CDA=26°,

∴∠ADO=64°

OD=OA,

∴∠DAB=ODA=64°;

(II)如圖②,連接OD,

RtODC中,OC=BCOB=103=7,

ED、EB分別為⊙O的切線,

ED=EB

RtCBE中,設BE=x,由得:

解得:

BE的長是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】把圖中陰影部分的小正方形移動一個,使它與其余四個陰影部分的正方形組成一個既是軸對稱又是中心對稱的新圖形,這樣的移法,正確的是(  )

A. 6→3 B. 7→16 C. 7→8 D. 6→15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣2x+10x軸,y軸相交于AB兩點,點C的坐標是(8,4),連接AC,BC

1)求過OA,C三點的拋物線的解析式,并判斷△ABC的形狀;

2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動.設運動時間為t秒,當t為何值時,PA=QA?

3)在拋物線的對稱軸上,是否存在點M,使以A,BM為頂點的三角形是等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了實現(xiàn)省城合肥跨越發(fā)展,近兩年我市開始全面實施暢通一環(huán)工程,如圖為一環(huán)路的一座下穿路拱橋,它輪廓是拋物線,橋的跨度AB=16米,拱高為6.

1)請以A點為坐標原點,AB所在直線為x軸建立平面直角坐標系,將拋物線放在直角坐標系中,求出拋物線的解析式;

2)若橋拱下是雙向行車道,其中一條行車道能否并排行駛寬3米,高2米的兩輛汽車(汽車間隔不小于1米)說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2的圖象交于 A(﹣1,a),B 兩點.

(1)求出反比例函數(shù)的解析式及點 B 的坐標;

(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;

(3) P 是第四象限內反比例函數(shù)的圖象上一點,若POB 的面積為 1,請直接寫出點 P的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩地之間為直線距離且相距600千米,甲開車從A地出發(fā)前往B地,乙騎自行車從B地出發(fā)前往A地,已知乙比甲晚出發(fā)1小時,兩車均勻速行駛,當甲到達B地后立即原路原速返回,在返回途中再次與乙相遇后兩車都停止,如圖是甲、乙兩人之間的距離s(千類)與甲出發(fā)的時間t(小時)之間的圖象,則當甲第二次與乙相遇時,乙離B地的距離為_____千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知二次函數(shù)yax2+bx+c(a≠0)的圖象與x軸交于A(10),B(3,0)兩點,與y軸交于點C(0,﹣2),頂點為D,對稱軸交x軸于點E

(1)求該二次函數(shù)的解析式;

(2)M為該拋物線對稱軸左側上的一點,過點M作直線MNx軸,交該拋物線于另一點N.是否存在點M,使四邊形DMEN是菱形?若存在,請求出點M的坐標;若不存在,請說明理由;

(3)連接CE(如圖2),設點P是位于對稱軸右側該拋物線上一點,過點PPQx軸,垂足為Q.連接PE,請求出當△PQE與△COE相似時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在創(chuàng)建“全國文明城市”和“省級文明城區(qū)”過程中,欒城區(qū)污水處理廠決定先購買A、B兩型污水處理設備共20臺,對城區(qū)周邊污水進行處理.已知每臺A型設備價格為12萬元,每臺B型設備價格為10萬元;1臺A型設備和2臺B型設備每周可以處理污水640噸,2臺A型設備和3臺B型設備每周可以處理污水1080噸.

(1)求A、B兩型污水處理設備每周分別可以處理污水多少噸?

(2)要想使污水處理廠購買設備的資金不超過230萬元,但每周處理污水的量又不低于4500噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,E為BC上一點,以CE為直徑作O,AB與O相切于點D,連接CD,若BE=OE=2.

(1)求證:A=2DCB;

(2)求圖中陰影部分的面積(結果保留π和根號).

查看答案和解析>>

同步練習冊答案