【題目】閱讀下面材料:
觀察與思考:閱讀下列材料,并解決后面的問題.在銳角中,、、的對邊分別是a、b、c,過A作于D(如圖),則,,即,,于是,即.同理有:,,所以.
即:在一個三角形中,各邊和它所對角的正弦的比相等.在銳角三角形中,若已知三個元素(至少有一條邊),運(yùn)用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.
(1)如圖,中,,,,則;
(2)如圖,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達(dá)B處,此時又測得燈塔A在貨輪的北偏西75°的方向上(如圖),求此時貨輪距燈塔A的距離AB.
(3)在(2)的條件下,試求75°的正弦值.(結(jié)果保留根號)
【答案】(1)20;(2)15海里;(3).
【解析】
(1)根據(jù)材料:在一個三角形中,各邊和它所對角的正弦的比相等,寫出比例關(guān)系,代入數(shù)值即可求得AB的值.
(2)此題可先由速度和時間求出BC的距離,再由各方向角得出∠A的角度,過B作BM⊥AC于M,求出∠MBC=30°,求出MC,由勾股定理求出BM,求出AM、BM的長,由勾股定理求出AB即可;
(3)在三角形ABC中,∠A=45,∠ABC=75,∠ACB=60,過點(diǎn)C作AC的垂線BD,構(gòu)造直角三角形ABD,BCD,在直角三角形ABD中可求出AD的長,進(jìn)而可求出sin75°的值.
解:(1)在△ABC中,∠B=75°,∠C=45°,BC=60,則∠A=60°,
∵ =,
∴ =,
即 =,
解得:AB=20.
(2)如圖,
依題意:BC=60×0.5=30(海里)
∵CD∥BE,
∴∠DCB+∠CBE=180°
∵∠DCB=30°,
∴∠CBE=150°
∵∠ABE=75°.
∴∠ABC=75°,
∴∠A=45°,
在△ABC中,= 即= ,
解之得:AB=15.
答:貨輪距燈塔的距離AB=15海里.
(3)過點(diǎn)B作AC的垂線BM,垂足為M.
在直角三角形ABM中,∠A=45°,AB=15,
所以AM=15,在直角三角形BDC中,∠BCM=60°,BC=30°,可求得CM=15,
所以AC=15+15,
由題意得, =,sin75°= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關(guān)于直線x=1對稱,那么下列說法正確的是( 。
A. 將拋物線c沿x軸向右平移個單位得到拋物線c′ B. 將拋物線c沿x軸向右平移4個單位得到拋物線c′
C. 將拋物線c沿x軸向右平移個單位得到拋物線c′ D. 將拋物線c沿x軸向右平移6個單位得到拋物線c′
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=15,∠BAC=120°,小明要將該三角形分割成兩個直角三角形和兩個等腰三角形,他想出了如下方案:在AB上取點(diǎn)D,過點(diǎn)D畫DE∥AC交BC于點(diǎn)E,連結(jié)AE,在AC上取合適的點(diǎn)F,連結(jié)EF可得到4個符合條件的三角形,則滿足條件的AF長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)C,連接PO,若△POC的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點(diǎn)作OF⊥AB交⊙O于點(diǎn)D,交AC于點(diǎn)E,交BC的延長線于點(diǎn)F,點(diǎn)G是EF的中點(diǎn),連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)△ABC滿足什么條件時,四邊形ADCF是矩形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在線教育使學(xué)生足不出戶也能連接全球優(yōu)秀的教育資源. 下面的統(tǒng)計圖反映了我國在線教育用戶規(guī)模的變化情況.
(以上數(shù)據(jù)摘自《2017年中國在線少兒英語教育白皮書》)
根據(jù)統(tǒng)計圖提供的信息,下列推斷一定不合理的是
A. 2015年12月至2017年6月,我國在線教育用戶規(guī)模逐漸上升
B. 2015年12月至2017年6月,我國手機(jī)在線教育課程用戶規(guī)模占在線教育用戶規(guī)模的比例持續(xù)上升
C. 2015年12月至2017年6月,我國手機(jī)在線教育課程用戶規(guī)模的平均值超過7000萬
D. 2017年6月,我國手機(jī)在線教育課程用戶規(guī)模超過在線教育用戶規(guī)模的70%
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com