【題目】如圖,△ABC中,AC=BC=4,∠ACB=90°,D為邊AB上一動(dòng)點(diǎn)(不與A、B重合),⊙D與BC切于E點(diǎn),E點(diǎn)關(guān)于CD的對(duì)稱點(diǎn)F在△ABC的一邊上,則BD=______.
【答案】或;
【解析】
分為當(dāng)E點(diǎn)關(guān)于CD的對(duì)稱點(diǎn)F在AB或者AC上進(jìn)行討論:
①當(dāng)F在AB邊上時(shí),根據(jù)對(duì)稱性得出CE=CF,DE=DF,作,則 ,設(shè),則,,在直角三角形CHF中,用勾股定理解出即可得出答案;
②當(dāng)F在AC邊上時(shí),根據(jù)對(duì)稱性知圓與AC、BC均相切,此時(shí)D在AB的中點(diǎn),從而求解.
解:①當(dāng)F在AB邊上時(shí),作,連接DF、CF,如圖:
根據(jù)對(duì)稱性知:CE=CF,DE=DF
又∵AC=BC=4,∠ACB=90°
∴ ,△DEB是等腰直角三角形
設(shè),則,
∴
在直角三角形CHF中:
即: 解得:
∴
②當(dāng)F在AC邊上時(shí),根據(jù)對(duì)稱性知圓與AC、BC均相切,此時(shí)此時(shí)D在AB的中點(diǎn),如圖:
∴
故答案為:或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B、C、D是直徑為AB的⊙O上的四個(gè)點(diǎn),CD=BC,AC與BD交于點(diǎn)E。
(1)求證:DC2=CE·AC;
(2)若AE=2EC,求之值;
(3)在(2)的條件下,過(guò)點(diǎn)C作⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)H,若S△ACH=,求EC之長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一副籃架由配重、支架、籃板與籃筐組成,在立柱的C點(diǎn)觀察籃板上沿D點(diǎn)的仰角為45°,在支架底端的A點(diǎn)觀察籃板上沿D點(diǎn)的仰角為54°,點(diǎn)C與籃板下沿點(diǎn)E在同一水平線,若AB=1.91米,籃板高度DE為1.05米,求籃板下沿E點(diǎn)與地面的距離.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin54°≈0.80, cos54°≈0.60,tan54°≈1.33)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線y1=kx+3與雙曲線(x>0)交于點(diǎn)P,PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,直線y1=kx+3分別交x軸、y軸于點(diǎn)C和點(diǎn)D,且S△DBP=27,.
(1)求OD和AP的長(zhǎng);
(2)求m的值;
(3)如圖2,點(diǎn)M為直線BP上的一個(gè)動(dòng)點(diǎn),連接CB、CM,當(dāng)△BCM為等腰三角形時(shí),請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市為了回慣顧客,計(jì)劃于周年店慶當(dāng)天舉行抽獎(jiǎng)活動(dòng).凡是購(gòu)物金額達(dá)到m元及以上的顧客,都將獲得抽獎(jiǎng)機(jī)會(huì).規(guī)則如下:在一個(gè)不透明袋子里裝有除數(shù)字標(biāo)記外其它完全相同的4個(gè)小球,數(shù)字標(biāo)記分別為“a” 、“b”、“c”、“0” (其中正整數(shù)a、b、c滿足a+b+c=30且a>15).顧客先隨機(jī)摸出一球后不放回,再摸出第二球,則兩球標(biāo)記的數(shù)字之和為該顧客所獲獎(jiǎng)勵(lì)金額(單位:元)、經(jīng)調(diào)查發(fā)現(xiàn),每日前來(lái)購(gòu)物的顧客中,購(gòu)物金額及人數(shù)比例如下表所示:
購(gòu)物金額x (單位:元) | 0<x<100 | 100≤x<200 | 200≤x<300 | x≥300 |
人數(shù)比例 |
現(xiàn)預(yù)計(jì)活動(dòng)當(dāng)天購(gòu)物人數(shù)將達(dá)到200人.
(1)在活動(dòng)當(dāng)天,某顧客獲得抽獎(jiǎng)機(jī)會(huì),試用畫樹狀圖或列表的方法,求該顧客獲得a元獎(jiǎng)勵(lì)金的概率;
(2)以每位抽獎(jiǎng)?lì)櫩退@獎(jiǎng)勵(lì)金的平均數(shù)為決策依據(jù),超市設(shè)定獎(jiǎng)勵(lì)總金額不得超過(guò)2000元,且盡可能讓更多的顧客參與抽獎(jiǎng)活動(dòng),問(wèn)m應(yīng)定為100元?200元?還是300元?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面系中,一次函數(shù)的圖像經(jīng)過(guò)定點(diǎn)A,反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn)A,且與一次函數(shù)的圖像相交于點(diǎn)B(,m).
(1)求m、a的值;
(2)設(shè)橫坐標(biāo)為n的點(diǎn)P在反比例函數(shù)圖象的第三象限上,且在點(diǎn)B右側(cè),連接AP、BP,△ABP的面積為12,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)《圓》這一單元時(shí),我們學(xué)習(xí)了圓周角定理的推論:圓內(nèi)接四邊形的對(duì)角互補(bǔ);事實(shí)上,它的逆命題:對(duì)角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)共圓,也是一個(gè)真命題.在圖形旋轉(zhuǎn)的綜合題中經(jīng)常會(huì)出現(xiàn)對(duì)角互補(bǔ)的四邊形,那么,我們就可以借助“對(duì)角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)共圓”,然后借助圓的相關(guān)知識(shí)來(lái)解決問(wèn)題,例如:
已知:是等邊三角形,點(diǎn)是內(nèi)一點(diǎn),連接,將線段繞逆時(shí)針旋轉(zhuǎn)得到線段,連接,,,并延長(zhǎng)交于點(diǎn).當(dāng)點(diǎn)在如圖所示的位置時(shí):
(1)觀察填空:
①與全等的三角形是________;
②的度數(shù)為
(2)利用題干中的結(jié)論,證明:,,,四點(diǎn)共圓;
(3)直接寫出線段,,之間的數(shù)量關(guān)系.____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)的一種果汁飲料由A、B兩種水果配制而成,其比例與成本如下方表格所示,已知該飲料的成本價(jià)為8元/千克,按現(xiàn)價(jià)售出后可獲利潤(rùn)50%,每個(gè)月可出售27500瓶.
(1)求m的值;
(2)由于物價(jià)上漲,A水果成本提高了25%,B水果成本提高了20%,在不改變售價(jià)的情況下,若要保持每個(gè)月的利潤(rùn)不減少,則現(xiàn)在至少需要售出多少瓶飲料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】揚(yáng)州包子是淮揚(yáng)菜系的維揚(yáng)點(diǎn)心代表,里面的餡品種豐富.早飯準(zhǔn)備了四個(gè)包子,一個(gè)蟹黃包、一個(gè)松籽包、兩個(gè)三鮮包,四個(gè)包子除餡外其他都相同.
(1)請(qǐng)預(yù)測(cè)“吃一個(gè)包子恰好是松籽包”的概率是_______;
(2)請(qǐng)用畫樹狀圖或用表格的方法預(yù)測(cè)“吃兩個(gè)包子恰好是三鮮包”的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com