【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.
解:∵∠1+∠EFD=180°(鄰補角定義),∠1+∠2=180°(已知)
∴(同角的補角相等)①
∴(內(nèi)錯角相等,兩直線平行)②
∴∠ADE=∠3()③
∵∠3=∠B()④
∴(等量代換)⑤
∴DE∥BC()⑥
∴∠AED=∠C()⑦
【答案】∠EFD=∠2;AB∥EF;兩直線平行,內(nèi)錯角相等;已知;∠ADE=∠B;同位角相等,兩直線平行;兩直線平行,同位角相等
【解析】∵∠1+∠EFD=180°(鄰補角定義),∠1+∠2=180°(已知。
∴∠EFD=∠2(同角的補角相等)①
∴AB∥EF(內(nèi)錯角相等,兩直線平行)②
∴∠ADE=∠3(兩直線平行,內(nèi)錯角相等)③
∵∠3=∠B(已知)④
∴∠ADE=∠B(等量代換)⑤
∴DE∥BC(同位角相等,兩直線平行)⑥
∴∠AED=∠C(兩直線平行,同位角相等)⑦.
答案為:∠EFD=∠2;AB∥EF;兩直線平行,內(nèi)錯角相等;
∠ADE=∠B,同位角相等,兩直線平;
兩直線平行,同位角相等.
【考點精析】關于本題考查的余角和補角的特征和平行線的判定與性質,需要了解互余、互補是指兩個角的數(shù)量關系,與兩個角的位置無關;由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結論是平行線的性質才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】已知銳角△ABC中,邊BC長為12,高AD長為8.
(1)如圖,矩形EFGH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K.
①求的值;
②設EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關系式,并求S的最大值;
(2)若AB=AC,正方形PQMN的兩個頂點在△ABC一邊上,另兩個頂點分別在△ABC的另兩邊上,直接寫出正方形PQMN的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,若AB=10,則△BDE的周長等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,AE是△ABC的角平分線;ED平分∠AEB,交AB于點D;∠CAE=∠B.
(1)求∠B的度數(shù).
(2)如果AC=3cm,求AB的長度.
(3)猜想:ED與AB的位置關系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰三角形ABC中,AB=AC=4,BC=7.如圖2,在底邊BC上取一點D,連結AD,使得∠DAC=∠ACD.如圖3,將△ACD沿著AD所在直線折疊,使得點C落在點E處,連結BE,得到四邊形ABED.則BE的長是( )
A.4 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)有( )
①﹣0.5x2y3與5y2x3是同類項;
②2π與﹣4不是同類項;
③兩個單項式的和一定是多項式;
④單項式mn3的系數(shù)與次數(shù)之和為4.
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD、CE是腰AB、AC上的高,交于點O.
(1)求證:OB=OC.
(2)若∠ABC=65°,求∠COD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com