【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位的半圓O1,O2,O3,…組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2018秒時,點P的坐標是點( )
A. (2017,1) B. (2018,0) C. (2017,﹣1) D. (2019,0)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知是等邊三角形,點的坐標是,點在第一象限,的平分線交軸于點,把繞著點按逆時針方向旋轉(zhuǎn),使邊與重合,得到,連接.求:的長及點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=10.點D為y軸上一點,其坐標為(0,2),點P從點A出發(fā)以每秒2個單位的速度沿線段AC﹣CB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.
(1)當點P經(jīng)過點C時,求直線DP的函數(shù)解析式;
(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;
②如圖②,把長方形沿著OP折疊,點B的對應(yīng)點B′恰好落在AC邊上,求點P的坐標.
(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年9月,某手機公司發(fā)布了新款智能手機,為了調(diào)查某小區(qū)業(yè)主對該款手機的購買意向,該公司在某小區(qū)隨機對部分業(yè)主進行了問卷調(diào)查,規(guī)定每人只能從A類(立刻去搶購)、B類(降價后再去買)、C類(猶豫中)、D類(肯定不買)這四類中選一類,并制成了以下兩幅不完整的統(tǒng)計圖,由圖中所給出的信息解答下列問題:
(1)扇形統(tǒng)計圖中B類對應(yīng)的百分比為 %,請補全條形統(tǒng)計圖;
(2)若該小區(qū)共有4000人,請你估計該小區(qū)大約有多少人立刻去搶購該款手機.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,﹣1),圖象與y軸交于點C(0,3),與x軸交于A、B兩點.
(1)求拋物線的解析式;
(2)設(shè)拋物線對稱軸與直線BC交于點D,連接AC、AD,求△ACD的面積;
(3)點E為直線BC上的任意一點,過點E作x軸的垂線與拋物線交于點F,問是否存在點E使△DEF為直角三角形?若存在,求出點E坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2、寬為1的長方形CEFD拼在一起,構(gòu)成一個大的長方形ABEF.現(xiàn)將小長方形CEFD繞點C順時針旋轉(zhuǎn)至,旋轉(zhuǎn)角為.
(1)當點恰好落在EF邊上時,求旋轉(zhuǎn)角的值;
(2)如圖2,G為BC的中點,且00<<900,求證:;
(3)小長方形CEFD繞點C順時針旋轉(zhuǎn)一周的過程中,與能否全等?若能,直接寫出旋轉(zhuǎn)角的值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=8,點C和點D是⊙O上關(guān)于直線AB對稱的兩個點,連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點E,過點C作直線CG與線段AB的延長線相交于點F,與直線AD相交于點G,且∠GAF=∠GCE
(1)求證:直線CG為⊙O的切線;
(2)若點H為線段OB上一點,連接CH,滿足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:我們知道,比較兩數(shù)(式)大小有很多方法,“作差法”是常用的方法之一,其原理是不等式(或等式)的性質(zhì):若,則;若,則;若,則.
例:已知,,其中,求證:.
證明:.
∵,∴,∴.
(1)操作感知:比較大。
①若,則______;
②______.
(2)類比探究:已知,,試運用上述方法比較、的大小,并說明理由.
(3)應(yīng)用拓展:已知,為平面直角坐標系中的兩點,小明認為,無論取何值,點始終在點的上方,小明的猜想對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知:E是∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.求證:
(1)∠ECD=∠EDC;
(2)OE是CD的垂直平分線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com