【題目】如圖,△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別是R、S,若AQ=PQ,PR=PS,下面四個結論:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正確結論的序號是(請將所有正確結論的序號都填上).

【答案】①②④
【解析】解:①∵PR⊥AB,PS⊥AC,PR=PS, ∴點P在∠A的平分線上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2 , AS2=AP2﹣PS2
∵AD=AD,PR=PS,
∴AR=AS,∴①正確;
②∵AQ=QP,
∴∠QAP=∠QPA,
∵∠QAP=∠BAP,
∴∠QPA=∠BAP,
∴QP∥AR,∴②正確;
③在Rt△BRP和Rt△QSP中,只有PR=PS,
不滿足三角形全等的條件,故③錯誤;
④如圖,連接RS,與AP交于點D.
在△ARD和△ASD中,
,
所以△ARD≌△ASD.
∴RD=SD,∠ADR=∠ADS=90°.
所以AP垂直平分RS,故④正確.
所以答案是:①②④.

【考點精析】本題主要考查了線段垂直平分線的性質的相關知識點,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知y=xm﹣5是y關于x的二次函數(shù),那么m的值為(
A.﹣2
B.2
C.±2
D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下數(shù)表是由從l開始的連續(xù)自然數(shù)組成,觀察規(guī)律并完成各題的解答.

(1)表中第8行的最后一個數(shù)是 ,它是自然數(shù) 的平方,第8行共有 個數(shù);
(2)用含n的代數(shù)式表示:第n行的第一個數(shù)是 ,最后一個數(shù)是 ,第n行共有 個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地區(qū)為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費.為更好地決策,自來水公司隨機抽取部分用戶的用水量數(shù)據,并繪制了如下不完整的統(tǒng)計圖(每組數(shù)據包括右端點但不包括左端點),請你根據統(tǒng)計圖解答下列問題:

(1)此次調查抽取了多少用戶的用水量數(shù)據?
(2)補全頻數(shù)分布直方圖,求扇形圖中“15噸~20噸”部分的圓心角的度數(shù);
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)40萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】抗洪救災小組在甲地段有28人,乙地段有15人,現(xiàn)在又調來29人,分配在甲乙兩個地段,要求調配后甲地段人數(shù)是乙地段人數(shù)的2倍,求應調至甲地段和乙地段各多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級三班學生蘇琪為幫助同桌萬宇鞏固“平面直角坐標系四個象限內及坐標軸上的點的坐標特點”這一基礎知識,在三張完全相同且不透明的卡片正面分別寫上了﹣3,0,2三個數(shù)字,背面向上洗勻后隨機抽取一張,將卡片上的數(shù)字記為a,再從剩下的兩張中隨機取出一張,將卡片上的數(shù)字記為b,然后叫萬宇在平面直角坐標系中找出點M(a,b)的位置.

(1)請你用樹狀圖幫萬宇同學進行分析,并寫出點M所有可能的坐標;

(2)求點M在第二象限的概率;

(3)張老師在萬宇同學所畫的平面直角坐標系中,畫了一個半徑為3的⊙O,過點M能作多少條⊙O的切線?請直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的自變量的取值范圍是﹣3≤x≤6,相應的函數(shù)值的取值范圍是﹣5≤y≤﹣2,求這個一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線EF,CD相交于點0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度數(shù);
(2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)
(3)從(1)(2)的結果中能看出∠AOE和∠BOD有何關系?

查看答案和解析>>

同步練習冊答案