【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別在AB、AC上,且CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得到CF,連接EF.
(1)求證:△BDC≌△EFC;
(2)若EF∥CD,求證:∠BDC=90°.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CF,∠DCF=90°,然后根據(jù)同角的余角相等求出∠BCD=∠ECF,再利用“邊角邊”證明即可;
(2)根據(jù)兩直線平行,同旁?xún)?nèi)角互補(bǔ)求出∠F=90°,再根據(jù)全等三角形對(duì)應(yīng)角相等可得∠BDC=∠F.
(1)由旋轉(zhuǎn)的性質(zhì)得,CD=CF,∠DCF=90°,
∴∠DCE+∠ECF=90°,
∵∠ACB=90°,
∴∠BCD+∠DCE=90°,
∴∠BCD=∠ECF,
在△BDC和△EFC中,
,
∴△BDC≌△EFC(SAS);
(2)∵EF∥CD,
∴∠F+∠DCF=180°,
∵∠DCF=90°,
∴∠F=90°,
∵△BDC≌△EFC,
∴∠BDC=∠F=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,CF=AE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)已知∠DAB=60°,AF是∠DAB的平分線,若AD=3,求DC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交于A,B兩點(diǎn),點(diǎn)A和點(diǎn)B的橫坐標(biāo)分別為1和﹣2,這兩點(diǎn)的縱坐標(biāo)之和為1.
(1)求反比例函數(shù)的表達(dá)式與一次函數(shù)的表達(dá)式;
(2)當(dāng)點(diǎn)C的坐標(biāo)為(0,﹣1)時(shí),求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1)(3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)有等式Am=(i,j)表示正奇數(shù)m是第i組第j個(gè)數(shù)(從左往右數(shù)),如A7=(2,3),則A89=( )
A.(6,7)
B.(7,8)
C.(7,9)
D.(6,9)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器超市銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為200元,170元的A,B兩種型號(hào)的電風(fēng)扇,表中是近兩周的銷(xiāo)售情況:
銷(xiāo)售時(shí)段 | 銷(xiāo)售數(shù)量 | 銷(xiāo)售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 1800元 |
第二周 | 4臺(tái) | 10臺(tái) | 3100元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)售收入-進(jìn)貨成本)
(1)求A,B兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià).
(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),則A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,超市銷(xiāo)售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答下列各題:
(1)解不等式﹣x+1<7x﹣3;
(2)解不等式;
(3)解不等式,并把它的解集表示在數(shù)軸上.
(4)已知關(guān)于x的不等式組,恰好有兩個(gè)整數(shù)解,試確定實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖中二次函數(shù)解析式為y=ax2+bx+c(a≠0)則下列命題中正確的有(填序號(hào))
①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為4的大正方形ABCD內(nèi)有一個(gè)邊長(zhǎng)為1的小正方形CEFG,動(dòng)點(diǎn)P以每秒1cm的速度從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B停止(不含點(diǎn)A和點(diǎn)B).設(shè)△ABP的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.
(1)小穎通過(guò)認(rèn)真的觀察分析,得出了一個(gè)正確的結(jié)論:當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),存在著“同底等高”的現(xiàn)象,因此當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí)△ABP的面積S始終不發(fā)生變化.
問(wèn):在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,還存在類(lèi)似的現(xiàn)象嗎?若存在,請(qǐng)說(shuō)出P的位置;若不存在,請(qǐng)說(shuō)明理由.
(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中△ABP的面積S是否存在最大值?若存在,請(qǐng)求出最大面積;若不存在,請(qǐng)說(shuō)明理由.
(3)請(qǐng)寫(xiě)出S與t之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,建筑工人砌墻時(shí),經(jīng)常在兩個(gè)墻腳的位置分別插一根木樁,然后拉一條直的參照線,其運(yùn)用到的數(shù)學(xué)原理是( )
A.兩點(diǎn)之間,線段最短
B.兩點(diǎn)確定一條直線
C.垂線段最短
D.過(guò)一點(diǎn)有且只有一條直線和已知直線平行
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com