(2006•蘭州)如圖,在△ABC中,D,E分別是AB,AC上的一點(diǎn),BE與CD交于點(diǎn)O,給出下列四個(gè)條件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.
(1)上述四個(gè)條件中,哪兩個(gè)可以判定△ABC是等腰三角形?
(2)選擇第(1)題中的一種情形為條件,試說明△ABC是等腰三角形.

【答案】分析:(1)要證ABC是等腰三角形,就要證∠ABC=∠ACB,根據(jù)已知條件即可找到證明∠ABC=∠ACB的組合;
(2)可利用△DOB與△EOC全等,得出OC=OB,再得出∠OCB與∠OBC相等,就能證明∠ABC與∠ACB相等.
解答:解:(1)①③,①④,②③和②④;

(2)以①④為條件,理由:
∵OB=OC,
∴∠OBC=∠OCB.
又∵∠DBO=∠ECO,
∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.
點(diǎn)評(píng):此題主要考查利用等角對(duì)等邊來判定等腰三角形;題目對(duì)學(xué)生的要求比較高,利用等量加等量和相等是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•蘭州)如圖所示,有一座拋物線形拱橋,橋下面在正常水位AB時(shí),寬20m,水位上升3m就達(dá)到警戒線CD,這時(shí)水面寬度為10m.
(1)在如圖的坐標(biāo)系中求拋物線的解析式;
(2)若洪水到來時(shí),水位以每小時(shí)0.2m的速度上升,從警戒線開始,再持續(xù)多少小時(shí)才能到達(dá)拱橋頂?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省潮州市潮安縣松昌實(shí)驗(yàn)學(xué)校中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2006•蘭州)如圖所示,有一座拋物線形拱橋,橋下面在正常水位AB時(shí),寬20m,水位上升3m就達(dá)到警戒線CD,這時(shí)水面寬度為10m.
(1)在如圖的坐標(biāo)系中求拋物線的解析式;
(2)若洪水到來時(shí),水位以每小時(shí)0.2m的速度上升,從警戒線開始,再持續(xù)多少小時(shí)才能到達(dá)拱橋頂?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•蘭州)如圖所示,有一座拋物線形拱橋,橋下面在正常水位AB時(shí),寬20m,水位上升3m就達(dá)到警戒線CD,這時(shí)水面寬度為10m.
(1)在如圖的坐標(biāo)系中求拋物線的解析式;
(2)若洪水到來時(shí),水位以每小時(shí)0.2m的速度上升,從警戒線開始,再持續(xù)多少小時(shí)才能到達(dá)拱橋頂?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圓》(02)(解析版) 題型:選擇題

(2006•蘭州)如圖,在直角梯形ABCD中,AB⊥BC,AD=1,BC=3,CD=4,EF為梯形的中位線,DH為梯形的高,則下列結(jié)論:①∠BCD=60°;②四邊形EHCF為菱形;③S△BEH=S△CEH;④以AB為直徑的圓與CD相切于點(diǎn)F,其中正確結(jié)論的個(gè)數(shù)為( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年廣西玉林市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•蘭州)如圖,P1、P2、P3是雙曲線上的三點(diǎn).過這三點(diǎn)分別作y軸的垂線,得到三個(gè)三角形P1A10,P2A20,P3A30,設(shè)它們的面積分別是S1、S2、S3,則( )

A.S1<S2<S3
B.S2<S1<S3
C.S1<S3<S2
D.S1=S2=S3

查看答案和解析>>

同步練習(xí)冊(cè)答案