【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8…頂點(diǎn)依次用A1,A2,A3,A4,…表示,則頂點(diǎn)A2019的坐標(biāo)是_________.
【答案】(505,505)
【解析】
根據(jù)正方形的性質(zhì)找出部分An點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)的變化找出變化規(guī)律“A4n+1(n1,n1),A4n+2(n1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,n1)(n為自然數(shù))”,依此即可得出結(jié)論.
解:觀察,發(fā)現(xiàn):A1(1,1),A2(1,1),A3(1,1),A4,(1,1),A5(2,2),A6(2,2),A7(2,2),A8(2,2),A9(3,3),…,
∴A4n+1(n1,n1),A4n+2(n1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,n1)(n為自然數(shù)).
∵2019=504×4+3,
∴A2019(505,505).
故答案為:(505,505).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),如圖1,直角三角板△MON中,OM=ON=,OQ=1,直線l過(guò)點(diǎn)N和點(diǎn)N,拋物線y=ax2+x+c過(guò)點(diǎn)Q和點(diǎn)N.
(1)求出該拋物線的解析式;
(2)已知點(diǎn)P是拋物線y=ax2+x+c上的一個(gè)動(dòng)點(diǎn).
①初步嘗試
若點(diǎn)P在y軸右側(cè)的該拋物線上,如圖2,過(guò)點(diǎn)P作PA⊥y軸于點(diǎn)A,問(wèn):是否存在點(diǎn)P,使得以N、P、A為頂點(diǎn)的三角形與△ONQ相似.若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
②深入探究
若點(diǎn)P在第一象限的該拋物線上,如圖3,連結(jié)PQ,與直線MN交于點(diǎn)G,以QG為直徑的圓交QN于點(diǎn)H,交x軸于點(diǎn)R,連結(jié)HR,求線段HR的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在中,,.點(diǎn)為內(nèi)一點(diǎn),且.
(1)求證:;
(2),為延長(zhǎng)線上的一點(diǎn),且.如圖(2),
①求證:平分;
②若點(diǎn)在線段上,且,請(qǐng)判斷、的數(shù)量關(guān)系,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商貿(mào)公司有、兩種型號(hào)的商品需運(yùn)出,這兩種商品的體積和質(zhì)量分別如下表所示:
體積(立方米/件) | 質(zhì)量(噸/件) | |
型商品 | 0.8 | 0.5 |
型商品 | 2 | 1 |
(1)已知一批商品有、兩種型號(hào),體積一共是20立方米,質(zhì)量一共是10.5噸,求、兩種型號(hào)商品各有幾件?
(2)物資公司現(xiàn)有可供使用的貨車每輛額定載重3.5噸,容積為6立方米,其收費(fèi)方式有以下兩種:
①按車收費(fèi):每輛車運(yùn)輸貨物到目的地收費(fèi)600元;
②按噸收費(fèi):每噸貨物運(yùn)輸?shù)侥康牡厥召M(fèi)200元.
現(xiàn)要將(1)中商品一次或分批運(yùn)輸?shù)侥康牡,如果兩種收費(fèi)方式可混合使用,商貿(mào)公司應(yīng)如何選擇運(yùn)送、付費(fèi)方式,使其所花運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的中線,tanB=,cosC=,AC=.求:
(1)BC的長(zhǎng);
(2)尺規(guī)作圖(保留作圖痕跡,不寫作法):作出△ABC的外接圓,并求外接圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)網(wǎng)約車十分流行,初三某班學(xué)生對(duì)“美團(tuán)”和“滴滴”兩家網(wǎng)約車公司各10名司機(jī)月收入進(jìn)行了一項(xiàng)抽樣調(diào)查,司機(jī)月收入(單位:千元)如圖所示:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均月收入/千元 | 中位數(shù)/千元 | 眾數(shù)/千元 | 方差/千元2 | |
“美團(tuán)” | ① | 6 | 6 | 1.2 |
“滴滴” | 6 | ② | 4 | ③ |
(1)完成表格填空;
(2)若從兩家公司中選擇一家做網(wǎng)約車司機(jī),你會(huì)選哪家公司,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,OD⊥BC于D,∠OCD=40°,則弦BC所對(duì)圓周角的度數(shù)是( 。
A. 40° B. 50° C. 50°或130° D. 40°或140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:□ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程x2-mx+-=0的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么□ABCD的周長(zhǎng)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com