【題目】(本題8分)如圖,在△ABC中,D是BC邊上的一點,∠B=50°,∠BAD=30°,將△ABD沿AD折疊得到△AED,AE與BC交于點F.
(1)求∠AFC的度數(shù);
(2)求∠EDF的度數(shù).
【答案】(1)110°;(2)20°.
【解析】試題分析: (1)根據(jù)折疊的特點得出∠BAD=∠DAF,再根據(jù)三角形一個外角等于它不相鄰兩個內(nèi)角之和,即可得出答案;
(2)根據(jù)已知求出∠ADB的值,再根據(jù)△ABD沿AD折疊得到△AED,得出∠ADE=∠ADB,最后根據(jù)∠EDF=∠EDA+∠BDA-∠BDF,即可得出答案.
試題解析:
(1)∵△ABD沿AD折疊得到△AED,
∴∠BAD=∠DAF,
∵∠B=50°∠BAD=30°,
∴∠AFC=∠B+∠BAD+∠DAF=110°;
故答案為110.
(2)∵∠B=50°,∠BAD=30°,
∴∠ADB=180°-50°-30°=100°,
∵△ABD沿AD折疊得到△AED,
∴∠ADE=∠ADB=100°,
∴∠EDF=∠EDA+∠BDA-∠BDF=100°+100°-180°=20°.
科目:初中數(shù)學 來源: 題型:
【題目】下列事件是必然事件的是________.(填序號)
①3個人分成兩組,一定有2人分在一組;
②隨意擲兩個完好的骰子,朝上一面的點數(shù)之和不小于2;
③明天北京會刮大風,出現(xiàn)沙塵暴;
④你百米可跑5秒.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是我市某一天在不同時段測得的氣溫情況
0:00 | 4:00 | 8:00 | 12:00 | 16:00 | 20:00 |
11℃ | 14℃ | 16℃ | 23℃ | 20℃ | 17℃ |
則這一天氣溫的極差是_____________℃.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請從以下兩個小題中任選一個作答,若多選,則按所選的第一題計分:
A.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點,若四邊形EFGH的面積12,則四邊形ABCD的面積為 .
B.如圖,AB、CD是兩棟樓,且AB=CD=30m,兩樓間距AC=24m,當太陽光與水平線的夾角為30°時,AB樓在CD樓上的影子是 m.(精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知△ABC,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE,連接BE,CD,請你完成圖形,并證明:BE=CD;(尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)如圖2,已知△ABC,以AB、AC為邊向外作正方形ABFD和正方形ACGE,連接BE,CD,BE與CD有什么數(shù)量關(guān)系?簡單說明理由;
(3)運用(1)、(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,要測量池塘兩岸相對的兩點B,E的距離,已經(jīng)測得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AB=5cm,BC=3cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求△ABP的周長;
(2)問t滿足什么條件時,△BCP為直角三角形;
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQ把△ABC的周長分成相等的兩部分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com