【題目】如圖,AB∥CD,直L交AB、CD分別于點E、F,點M在線段EF上(點M不與E、F重合),N是直線CD上的一個動點(點N不與F重合)

(1)當點N在射線FC上運動時(F點除外),則∠FMN+∠FNM=∠AEF,說明理由?
(2)當點N在射線FD上運動時(F點除外),∠FMN+∠FNM與∠AEF有什么關(guān)系?畫出圖形,猜想結(jié)論并證明.

【答案】
(1)

解:∵AB∥CD,

∴∠AEF+∠MFN=180°.

∵∠MFN+∠FMN+∠FNM=180°,

∴∠FMN+∠FNM=∠AEF.


(2)

解:∠FMN+∠FNM+∠AEF=180°.

理由:如圖所示,

∵AB//CD,

∴∠AEF=∠MFN.

∵∠MFN+∠FMN+∠FNM=180°,

∴∠FMN+∠FNM+∠AEF=180°.


【解析】(1)利用兩直線平行,同旁內(nèi)角互補和三角形的內(nèi)角和為180°,易得∠FMN+∠FNM=∠AEF;(2)根據(jù)兩直線平行,內(nèi)錯角相等和三角形的內(nèi)角和為180度,易得∠FMN+∠FNM+∠AEF=180°.
【考點精析】認真審題,首先需要了解平行線的性質(zhì)(兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB=45°,點P在∠AOB內(nèi)部,P1與P關(guān)于OB對稱,P2與P關(guān)于OA對稱,則P1 , O,P2三點構(gòu)成的三角形是(  )
A.直角三角形
B.等腰三角形
C.等邊三角形
D.等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲隊有50輛汽車,乙隊有41輛汽車,將甲隊一部分汽車調(diào)到乙隊,使乙隊的車數(shù)比甲隊車數(shù)的2倍還多1輛,求從甲隊調(diào)到乙隊汽車的輛數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某校300名初三學生的睡眠時間,從中抽取30名學生進行調(diào)查,在這個問題中,下列說法正確的是 ( )

A. 300名學生是總體 B. 300是眾數(shù)

C. 30名學生是抽取的一個樣本 D. 30是樣本的容量

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為估計全市七年級學生的體重情況,從某私立學校隨機抽取20人進行調(diào)查,在這個問題中,調(diào)查的樣本________(填“具有”或“不具有”)代表性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為保證中小學生每天鍛煉一小時,某校開展了形式多樣的體育活動項目,小明對某班同學參加鍛煉的情況進行了統(tǒng)計,并繪制了下面的頻率統(tǒng)計表和頻數(shù)分布直方圖.請你根據(jù)圖表信息完成下列各題:

(1)填空: a=    ;m=    ;n=    ;

(2)請將條形統(tǒng)計圖補充完整;

(3)該校共有學生1500人,估計參加乒乓球項目的學生有    人;

運動項目

頻數(shù)(人數(shù))

頻率

籃球

20

0.40

乒乓球

n

0.10

足球

10

m

其他

15

0.30

合計

a

1.00

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 負數(shù)沒有倒數(shù) B. ﹣1的倒數(shù)是﹣1

C. 任何有理數(shù)都有倒數(shù) D. 正數(shù)的倒數(shù)比自身小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x1、x2是一元二次方程了x22x=0的兩個實數(shù)根,下列結(jié)論錯誤的是

A. x1≠x2B. x122x1=0C. x1+x2=2D. x1·x2=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一張長方形紙片ABCD折疊起來,使其對角頂點A與C重合,D與G重合.若長方形的長BC為8,寬AB為4,求:

(1)CF的長;
(2)EF的長;
(3)求陰影部分三角形GED的面積.

查看答案和解析>>

同步練習冊答案