【題目】如圖,在ABC中,∠ACB=90°,AC=BC,PABC內(nèi)一點(diǎn),且PA=3,PB=1,PC= CD=2,CDCP,求∠BPC的度數(shù)

【答案】135°

【解析】試題分析:根據(jù)同角的余角相等求出∠ACP=BCD,再利用邊角邊證明ACPBCD全等,判斷出PCD是等腰直角三角形,再根據(jù)全等三角形對應(yīng)邊相等可得AP=BD,然后利用勾股定理逆定理判斷出BPD是直角三角形,∠BPD=90°,再根據(jù)∠BPC=BPD+CPD代入數(shù)據(jù)計(jì)算即可得解.

試題解析:

解:連接BD.

CDCP,CP=CD=2,

∴△CPD為等腰直角三角形

∴∠CPD=45°.

∵∠ACPBCPBCPBCD=90°,

∴∠ACPBCD.

CACB,

∴△CAP≌△CBD(SAS).

DBPA=3.

RtCPD,DP2CP2CD2=22+22=8.

又∵PB=1,DB2=9,

DB2DP2PB2=8+1=9.

∴∠DPB=90°.

∴∠CPBCPDDPB=45°+90°=135°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(x-2)(x-3)=m有實(shí)數(shù)根x1、x2 , 且x1≠x2 , 有下列結(jié)論:①x1=2,x2=3;②m> ;③二次函數(shù)y=(x-x1)(x-x2)+m的圖象與x軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0).其中,正確結(jié)論的個(gè)數(shù)是( 。
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的數(shù)學(xué)問題:今有鳧(鳧:野鴨)起南海,七日至北海;雁起北海,九日至南海.今鳧雁俱起,問何日相逢?意思是:野鴨從南海起飛,7天飛到北海;大雁從北海起飛,9天飛到南海.野鴨與大雁從南海和北海同時(shí)起飛,經(jīng)過幾天相遇.設(shè)野鴨與大雁從南海和北海同時(shí)起飛,經(jīng)過x天相遇,根據(jù)題意,下面所列方程正確的是( 。

A. (9-7)x=1 B. (9-7)x=1 C. +)x=1 D. -)x=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中, 不是同位角的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公司引進(jìn)A,B兩種機(jī)器人用來搬運(yùn)某種貨物這兩種機(jī)器人充滿電后可以連續(xù)搬運(yùn)5小時(shí)A種機(jī)器人于某日0時(shí)開始搬運(yùn),過了1小時(shí),B種機(jī)器人也開始搬運(yùn),如圖線段OG表示A種機(jī)器人的搬運(yùn)量yA(千克)與時(shí)間x(時(shí))的函數(shù)圖象,根據(jù)圖象提供的信息,解答下列問題

(1)yB關(guān)于x的函數(shù)解析式;

(2)如果A,B兩種機(jī)器人連續(xù)搬運(yùn)5小時(shí),那么B種機(jī)器人比A種機(jī)器人多搬運(yùn)了多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,將一塊直角三角板的直角頂點(diǎn)放在O(:∠DOE=90°).

(1)如圖①,若直角三角板DOE的一邊OD放在射線OB,∠BOC=60°,∠COE的度數(shù);

(2)如圖②,將三板DOEO逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),若恰好滿足5∠COD=∠AOE,∠BOC=60°,∠BOD的度數(shù);

(3)如圖③,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,OE恰好平分∠AOC,請說明OD所在射線是∠BOC的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,過點(diǎn)A(﹣ ,0)的兩條直線分別交y軸于B、C兩點(diǎn),且B、C兩點(diǎn)的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個(gè)根

(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點(diǎn)D在直線AC上,且DB=DC,求點(diǎn)D的坐標(biāo);
(4)在(3)的條件下,直線BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請直接寫出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)O是等腰△ABC的外心,且∠BOC=60°,底邊BC=2,則△ABC的面積為(  )
A.2+
B.
C.2+ 或2﹣
D.4+2 或2﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求代數(shù)式( )÷ 的值,其中a=2sin60°+tan45°.

查看答案和解析>>

同步練習(xí)冊答案