(2012•鄭州模擬)如圖,已知弦CD⊥直徑AB于點E,連接OC,OD,CB,DB,下列結(jié)論一定正確的是( 。
分析:根據(jù)垂徑定理得到EC=ED,弧BC=弧BD,再利用同圓中相等的弧所對的弦相等得到BC=BD;由于OD≠BC,根據(jù)平行四邊形的判定定理得四邊形OCBD不是平行四邊形,當(dāng)然也不是菱形;也沒條件計算出∠CBD=120°.
解答:解:∵弦CD⊥直徑AB于點E,
∴EC=ED,弧BC=弧BD,
∴BC=BD;
∵OC=OD,
∴OD≠BC,
∴四邊形OCBD不是平行四邊形,也不是菱形;也不能計算出∠CBD=120°.
故選B.
點評:本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的。部疾榱似叫兴倪呅闻c菱形的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄭州模擬)中國男子職業(yè)籃球聯(lián)賽(CBA)2011-2012賽季總決賽在廣東東莞與北京金隅兩隊之間進(jìn)行,北京金隅隊球星馬布里在前五場的得分情況如下:36、23、39、28、32,這組數(shù)據(jù)的極差和中位數(shù)分別是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄭州模擬)將兩張矩形紙片如圖所示擺放,使其中一張矩形紙片的一個頂點恰好落在另一張矩形紙片的一條邊上,若∠1=26°,則∠2的度數(shù)為
64
64
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄭州模擬)如圖,PA與⊙O相切,切點為A,PO交⊙O于點C,點B是優(yōu)弧
CBA
上一點,若∠ABC=31°,則∠P的度數(shù)為
28°
28°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄭州模擬)鄭州地鐵一號線將于2013年底建成,它的通車將給市民的出行方式帶來一些新變化.小王和小林準(zhǔn)備利用課余時間,以問卷的方式對鄭州市民的出行方式進(jìn)行調(diào)查.如圖是鄭州地鐵一號線圖(部分),小王和小林分別從鄭州火車站、二七廣場站、市體育館站這三站中,隨機(jī)選取一站向其周圍的人群進(jìn)行問卷調(diào)查,則小王選取的站點與小林選取的站點相鄰的概率是
4
9
4
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄭州模擬)已知二次函數(shù)y=ax2+bx-2的圖象經(jīng)過點A(1,0)及B(-2,0)兩點.
(1)求二次函數(shù)的表達(dá)式及拋物線頂點M的坐標(biāo);
(2)若點N為線段BM上的一點,過點N作x軸的垂線,垂足為點Q,當(dāng)點N在線段BM上運動時(點N不與點B、點M重合),設(shè)NQ的長為t,四邊形NQAC的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出四邊形NQAC的面積的最大值;
(3)在拋物線的對稱軸上是否存在點P,使△PAC為直角三角形?若存在,直接寫出所有符合條件的點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案