【題目】如圖,已知平行四邊形ABCD的兩條對角線相交于點O,E是BO的中點,過B點作AC的平行線,交CE的延長線于點F,連接BF。
(1)求證:FB=AO;
(2)平行四邊形ABCD滿足什么條件時,四邊形AFBO是矩形?說明理由.
【答案】(1)證明見解析;(2)當平行四邊形ABCD是菱形時,四邊形AFBO是矩形.
【解析】
(1)證明△BEF≌△OEC,即可得出結(jié)論;
(2)先證明四邊形AFBO是平行四邊形,然后根據(jù)OA⊥OB得到平行四邊形AFBO是矩形.
證明:(1)∵E是BO的中點,
∴OE=BE,
∵BF∥AC,
∴∠BFE=∠OCE,
在△BEF和△OEC中,
∴△BEF≌△OEC,
∴BF=OC,
∵平行四邊形ABCD的兩條對角線相交于點O,
∴OA=OC,
∴FB=AO;
(2)當平行四邊形ABCD是菱形時,四邊形AFBO是矩形.理由如下:
∵BF∥AC,FB=AO,
∴四邊形AFBO是平行四邊形,
∵平行四邊形ABCD是菱形,
∴OA⊥OB,
∴∠AOB=90°.
∴平行四邊形AFBO是矩形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊型ABCD中,AB∥DC,過對角線AC的中點O作,分別交邊AB,CD于點E,F,連接CE,AF.
(1)求證:四邊形AECF是菱形;
(2)若EF=8,AE=5,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠ACD=30°,BD=6,
求(1)∠BAD,∠ABC的度數(shù);
(2)求AB,AC的長;
(3)求菱形ABCD的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F分別在線段OA,OC上,且OB=OD,∠1=∠2,AE=CF.
(1)證明:△BEO≌△DFO;
(2)證明:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD是一張邊長為4cm的正方形紙片,E,F分別為AB,CD的中點,沿過點D的折痕將A 角翻折,使得點A落在EF上的點A′處,折痕交AE于點G,則EG=_________cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在某校組織的“交通安全宣傳教育月”活動中,八年級數(shù)學興趣小組的同學進行了如下的課外實踐活動.具體內(nèi)容如下:在一段筆直的公路上選取兩點A、B,在公路另一側(cè)的開闊地帶選取一觀測點C,在C處測得點A位于C點的南偏西45°方向,且距離為100米,又測得點B位于C點的南偏東60°方向.已知該路段為鄉(xiāng)村公路,限速為60千米/時,興趣小組在觀察中測得一輛小轎車經(jīng)過該路段用時13秒.
(1)請你幫助他們算一算,這輛小車是否超速?(參考數(shù)據(jù):≈1.41,≈1.73,計算結(jié)果保留兩位小數(shù)).
(2)請你以交通警察叔叔的身份對此小轎車的行為作出處理意見,并就鄉(xiāng)村公路安全管理提出自己的建議。(處理意見合情合理,建議盡量全面。)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(三角形頂點是網(wǎng)格線的交點)和△A1B1C1,且△ABC與△A1B1C1,成中心對稱.
(1)畫出△ABC和△A1B1C1的對稱中心;
(2)將△A1B1C1沿直線方向向上平移6格,得到△A2B2C2,畫出△A2B2C2;
(3)將△A2B2C2繞點C2順時針方向旋轉(zhuǎn)90°,得到△A3B3C3,畫出△A3B3C3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD繞點C旋轉(zhuǎn)得到矩形FECG,點E在AD上,延長ED交FG于點H.
(1)求證:△EDC≌△HFE;
(2)連接BE、CH.
①四邊形BEHC是怎樣的特殊四邊形?證明你的結(jié)論.
②當AB與BC的比值為 時,四邊形BEHC為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有三個點,是的邊上一點,經(jīng)平移后得到,點的對應點為.
(1)畫出平移后的,寫出點的坐標;
(2)的面積為_________________;
(3)若點是軸上一動點,的面積為,求與之間的關(guān)系式(用含的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com