如圖,拋物線y=-x2+2x+3與x軸交于A、B兩點(diǎn),與y軸于點(diǎn)C,點(diǎn)D為對(duì)稱(chēng)軸l上的一個(gè)動(dòng)點(diǎn).
(1)求當(dāng)AD+CD最小時(shí),點(diǎn)D的坐標(biāo);
(2)以點(diǎn)A為圓心,以AD為半徑作⊙A
①證明:當(dāng)AD+CD最小時(shí),直線BD與⊙A相切.
②寫(xiě)出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo)______.
(1)因?yàn)辄c(diǎn)A關(guān)于l的對(duì)稱(chēng)點(diǎn)是點(diǎn)B,所以連接BC,交l于點(diǎn)D,即為所求點(diǎn).
由拋物線y=-x2+2x+3與x軸交于A、B兩點(diǎn),
則對(duì)稱(chēng)軸為:x=1.
當(dāng)-x2+2x+3=0,
解得:x=3或x=-1.
∴點(diǎn)A(-1,0),點(diǎn)B(3,0),
拋物線y=-x2+2x+3當(dāng)x=0時(shí),y=3,
∴點(diǎn)C(0,3).
設(shè)直線BC為:y=kx+b,
代入點(diǎn)B,C得:k=-1,b=3,即y=-x+3,
代入對(duì)稱(chēng)軸x=1,則y=2,
∴點(diǎn)D(1,2).

(2)①由題意如圖,
∵A,B關(guān)于l對(duì)稱(chēng),
∴AD=BD,BE=2,AB=4,DE=2,
則BD=AD=
DE2+BE2
=2
2

∴BD2+AD2=16,
∵AB2=16,
∴BD2+AD2=AB2,
由勾股定理的逆定理知,∠ADB=90°,即AD⊥BD.
故當(dāng)AD+CD最小時(shí),直線BD與⊙A相切.
②由①所得點(diǎn)D的另一個(gè)坐標(biāo)(1,-2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,求拋物線的解析式;
(3)在(2)條件下,點(diǎn)P(不與A、C重合)是拋物線上的一點(diǎn),點(diǎn)M是y軸上一點(diǎn),當(dāng)△BPM是等腰直角三角形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一家電腦公司推出一款新型電腦,投放市場(chǎng)以來(lái)的利潤(rùn)情況可以看做是拋物線的一部分,請(qǐng)結(jié)合下面的圖象解答以下問(wèn)題:
(1)求該拋物線對(duì)應(yīng)的二次函數(shù)的解析式;
(2)該公司在經(jīng)營(yíng)此款電腦過(guò)程中,第幾個(gè)月的利潤(rùn)最大,最大利潤(rùn)是多少;
(3)若照此經(jīng)營(yíng)下去,請(qǐng)你結(jié)合所學(xué)的知識(shí),對(duì)公司在此款電腦的經(jīng)營(yíng)狀況(是否虧損何時(shí)虧損)作出預(yù)測(cè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖一次函數(shù)y=
1
2
x+1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;二次函數(shù)y=
1
2
x2+bx+c的圖象與一次函數(shù)y=
1
2
x+1的圖象交于B、C兩點(diǎn),與x軸交于D、E兩點(diǎn)且D點(diǎn)坐標(biāo)為(1,0).
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點(diǎn)P,使得△PBC是以P為直角頂點(diǎn)的直角三角形?若存在,求出所有的點(diǎn)P,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y1=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,1),且經(jīng)過(guò)點(diǎn)B(
5
2
,
3
4
),拋物線對(duì)稱(chēng)軸左側(cè)與x軸交于點(diǎn)A,與y軸相交于點(diǎn)C.
(1)求拋物線解析式y(tǒng)1和直線BC的解析式y(tǒng)2
(2)連接AB、AC,求△ABC的面積.
(3)根據(jù)圖象直接寫(xiě)出y1<y2時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)過(guò)點(diǎn)A(1,-3),B(3,-3),C(-1,5),頂點(diǎn)為M點(diǎn).
(1)求該拋物線的解析式.
(2)試判斷拋物線上是否存在一點(diǎn)P,使∠POM=90°.若不存在,說(shuō)明理由;若存在,求出P點(diǎn)的坐標(biāo).
(3)試判斷拋物線上是否存在一點(diǎn)K,使∠OMK=90°,若不存在,說(shuō)明理由;若存在,求出K點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)于二次函數(shù)y=ax2+bx+c(a≠0),如果當(dāng)x取任意整數(shù)時(shí),函數(shù)值y都是整數(shù),此時(shí)稱(chēng)該點(diǎn)(x,y)為整點(diǎn),該函數(shù)的圖象為整點(diǎn)拋物線(例如:y=x2+2x+2).
(1)請(qǐng)你寫(xiě)出一個(gè)二次項(xiàng)系數(shù)的絕對(duì)值小于1的整點(diǎn)拋物線的解析式______(不必證明);
(2)請(qǐng)直接寫(xiě)出整點(diǎn)拋物線y=x2+2x+2與直線y=4圍成的陰影圖形中(不包括邊界)所含的整點(diǎn)個(gè)數(shù)有______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,某地一城墻門(mén)洞呈拋物線形,已知門(mén)洞的地面寬度AB=12米,兩側(cè)距地面5米高C、D處各安裝一盞路燈,兩燈間的水平距離CD=8米,
(1)求這個(gè)門(mén)洞的高度______;
(2)現(xiàn)有體寬均約為0.5水,身高約為1.6米的20名同學(xué)想要手挽手成一排橫向通過(guò)該城門(mén),請(qǐng)你測(cè)算,他們能否通過(guò)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明代表班級(jí)參加校運(yùn)會(huì)的鉛球項(xiàng)目,他想:“怎樣才能將鉛球推得更遠(yuǎn)呢”,于是找來(lái)小剛做了如下的探索:小明手摯鉛球在控制每次推出時(shí)用力相同的條件下,分別沿與水平線成30°、45°、60°方向推了三次.鉛球推出后沿拋物線形運(yùn)動(dòng).如圖,小明推鉛球時(shí)的出手點(diǎn)距地面2m,以鉛球出手點(diǎn)所在豎直方向?yàn)閥軸、地平線為x軸建立直角坐標(biāo)系,分別得到的有關(guān)數(shù)據(jù)如下表:
鉛球的方向與水平線的夾角300450600
鉛球運(yùn)行所得到的拋物線解析式y1=-0.06(x-3)2+2.5y2=
______(x-4)2+3.6
y3=-0.22(x-3)2+4
估測(cè)鉛球在最高點(diǎn)的坐標(biāo)P1(3,2.5)P2(4,3.6)P3(3,4)
鉛球落點(diǎn)到小明站立處的水平距離9.5m

______m
7.3m
(1)請(qǐng)你求出表格中兩橫線上的數(shù)據(jù),寫(xiě)出計(jì)算過(guò)程,并將結(jié)果填入表格中的橫線上;
(2)請(qǐng)根據(jù)以上數(shù)據(jù),對(duì)如何將鉛球推得更遠(yuǎn)提出你的建議.

查看答案和解析>>

同步練習(xí)冊(cè)答案